首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3129篇
  免费   121篇
  国内免费   206篇
林业   47篇
农学   189篇
基础科学   32篇
  822篇
综合类   1841篇
农作物   140篇
水产渔业   118篇
畜牧兽医   186篇
园艺   62篇
植物保护   19篇
  2024年   42篇
  2023年   97篇
  2022年   139篇
  2021年   158篇
  2020年   137篇
  2019年   179篇
  2018年   140篇
  2017年   193篇
  2016年   219篇
  2015年   134篇
  2014年   138篇
  2013年   226篇
  2012年   285篇
  2011年   203篇
  2010年   217篇
  2009年   175篇
  2008年   124篇
  2007年   156篇
  2006年   117篇
  2005年   82篇
  2004年   58篇
  2003年   41篇
  2002年   26篇
  2001年   32篇
  2000年   26篇
  1999年   15篇
  1998年   22篇
  1997年   15篇
  1996年   12篇
  1995年   6篇
  1994年   9篇
  1993年   8篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有3456条查询结果,搜索用时 15 毫秒
241.
In order to understand how salicylic acid (SA) is involved in modulating rice responses to cadmium (Cd) toxicity, particularly in Cd immobilization, a series of hydroponic experiments were conducted to examine changes in cell wall composition, activities of the enzymes related to lignin synthesis including phenylalanine ammonia-lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO), subcellular Cd distribution, levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and lignin and non-protein thiols (NPT) in rice roots under Cd stress with or without the pretreatment of SA. Results showed that Cd treatment decreased root biomass by 40% compared with the control (no Cd treatment) and pretreatment with SA significantly mitigated the Cd-induced inhibition of root growth. There was no significant difference in root cell wall composition or lignification between the treatment with Cd alone and the treatment with Cd with SA. No effects were observed for SA pretreatment on the activities of PAL, POD, or PPO under Cd stress. Furthermore, soluble Cd concentrations in root cells were significantly higher in the treatment with Cd with SA than in the treatment with Cd alone. However, H2O2 and MDA concentrations in rice roots were significantly lower but NPT levels were higher in the treatment with Cd with SA than in the treatment with Cd alone, which indicated that SA alleviated Cd-induced oxidative damage. It seems to suggest that SA-mediated enhancement of Cd tolerance was not due to enhanced Cd retention in the cell wall but to enhanced Cd bindings with thiols (─SH) group. The effects of SA-enhanced Cd tolerance were discussed with regard to H2O2 signaling pathways.  相似文献   
242.
Genotypic differences in arsenic (As) and cadmium (Cd) uptake and their translocation within rice seedlings grown in solution culture were investigated. Arsenic uptake and its translocation differed significantly between eight cultivars. The largest shoot and root As concentrations were found in cultivar ‘TN1’ and ‘ZYQ8’, while cultivar ‘JX-17’ had the lowest As concentration. Arsenic concentration in shoot or root of ‘JX-17’ was about 50% of that in cultivar ‘ZYQ8’. Specific Arsenic uptake (SAU) was found significantly different between rice cultivars, which was about 2-fold higher of ‘ZYQ8’ than that of ‘JX-17’. The Cd accumulation also differed significantly between cultivars. Rice cultivar ‘JX-17’ had the highest ability in Cd uptake, but the lowest ability in Cd translocation from root to shoot. The transfer factor (TF) of Cd had an important effect on Cd accumulation by rice seedlings. Arsenic can competitively inhibit P uptake by rice seedlings, P concentrations in shoots, or roots treated with As were significantly lower than those without As addition. However, the concentrations of P and As were positively correlated within these genotypes. The Cd immobilization by cell wall was an important mechanism for Cd detoxification. The cell wall bound 21–44% of total Cd in shoots and 25–59% of total Cd in roots of these tested genotypes. The genotypic differences in As and Cd uptake and translocation within rice seedlings provide the possibility of selecting and breeding genotypes and /or cultivars with reduced levels of As and Cd in rice grains.  相似文献   
243.
The NRAMP gene family encodes integral membrane proteins mediating the transport of a broad range of transition metals in bacteria, fungi, plants, and animals. We studied the regulation of AtNRAMP4 in Arabidopsis. In a previous study, we showed that AtNRAMP3 and AtNRAMP4 transport manganese (Mn), iron (Fe), and cadmium (Cd). In this study, we show that, in contrast to AtNRAMP3, AtNRAMP4 complements the growth phenotype of the zrt1zrt2 Zn uptake deficient yeast mutant. In a previous study, we have shown that, under Fe starvation, AtNRAMP4 mRNA levels are up-regulated in Arabidopsis. To analyze the regulation of AtNRAMP4 at the protein level, we generated specific antibodies against AtNRAMP4 protein. The antiserum was able to recognize a tagged version of AtNRAMP4 expressed in yeast. The antibody did not reveal any change in AtNRAMP4 protein level upon Fe starvation in Arabidopsis thaliana ecotype Columbia plants. In AtNRAMP4 overexpressing plants, high levels of AtNRAMP4 protein could be detected. AtNRAMP4 overexpressing plants display cadmium hypersensitivity in a medium containing 50 μm FeEDTA as Fe source. However, despite the constitutive accumulation of AtNRAMP4 protein, AtNRAMP4 over-expressing plants did not display Cd hypersensitivity under high Fe supply (100 μm FeHBED). AtNRAMP4 over-expressing lines displayed the same sensitivity to Zn as controls under all conditions tested. Our results suggest a translational level for the regulation of AtNRAMP4. Over-expression of AtNRAMP4 in Arabidopsis thaliana confers a slight hypersensitivity to Cd but not to Zn.  相似文献   
244.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   
245.
《农业科学学报》2023,22(8):2521-2535
The addition of silicon (Si) and organic fertilizers to soil conditioners can inhibit the transfer of heavy metal ions from soil to crops. However, it is not clear how Si and organic fertilizers affect soil properties and the micro-ecological environment and thereby reduce cadmium (Cd) accumulation in rice. In this study, the effects of L-type soil conditioners containing Si and organic fertilizers on bacterial and fungal community diversity, soil pH, organic matter, and available Si were analyzed with field experiments at two sites in Liuzhou City and Hezhou City, respectively, in Guangxi, China. With the increase of Si and organic fertilizer content in soil conditioner, rice yield respectively increased by 16.8–25.8 and 6.8–13.1%, and rice Cd content decreased significantly by 8.2–21.1 and 10.8–40.6%, respectively, at the two experimental sites. Soil microbiome analysis showed that the increase in abundance of Firmicutes and Actinobacteriota bacteria associated with Cd adsorption and sequestration, and Basidiomycota fungal populations associated with degradation of macromolecules favored the inhibition of soil Cd activity (soil exchangeable Cd decreased by 14.4–14.8 and 18.1–20.6%). This was associated with an increase in organic matter and Si content caused by applying soil conditioners. In conclusion, L-type soil conditioners, rich in Si and organic fertilizer, can reduce soil Cd bioavailability by regulating the dominant Cd passivating flora in the soil and ultimately reduce Cd accumulation in rice.  相似文献   
246.
镉铜胁迫下紫苏的生长响应和富集特征研究   总被引:1,自引:4,他引:1  
通过盆栽试验,分析了紫苏(Perilla frutescens(L.)Britt.)在Cd、Cu胁迫下生长响应及其对Cd、Cu的耐性、吸收和累积特征.结果表明,在Cd处理浓度≤60mg·kg~(-1)和Cu处理浓度为≤600mg·kg~(-1)时,紫苏株高和根长均随处理浓度提高而增加,此后则随处理浓度增加胁迫作用渐趋明显.植株地上部和根部Cd的最高含量分别是331.51和991.14 mg·kg~(-1),Cu的最高含量分别为228.65和2 030.63 mg·kg~(-1).植株地上部Cd和Cu的最大富集量分别为66.70和36.52 μg·plant~(-1).植株Cd、Cu富集系数分别为2.59~15.42和0.14~1.24,迁移系数分别为0.35~1.44和0.07~0.56.因此,该植物可用于Cd、Cu污染土壤的修复.  相似文献   
247.
为比较系统地探讨Cd2 的生物毒性,作者以水培法研究了不同浓度的Cd2 溶液对四季豆种子萌发和幼苗生长发育过程中植物外部生长指标及内部生理生化变化的影响。结果表明:当Cd2 浓度较低时,Cd2 对种子萌发及幼苗生长发育毒害作用较小,一定浓度范围内(0.05~0.5mg/L)还有促生作用,高浓度Cd2 (5~100mg/L)能严重抑制四季豆幼苗根及下胚轴的生长;Cd2 胁迫对四季豆幼苗体内过氧化物酶(POD),超氧化物歧化酶(SOD),过氧化氢酶(CAT)活性存在低浓度激活和高浓度抑制的效应,且同一浓度的Cd2 对四季豆幼苗POD、CAT活性的抑制作用表现为根系大于下胚轴,Cd2 浓度>0.5mg/L时,根系SOD活性大于下胚轴中的活性;Cd2 胁迫下,四季豆下胚轴和根的丙二醛(MDA)含量增加,且根部含量大于下胚轴的量。Cd2 对矮生四季豆种苗生长发育的影响因Cd2 浓度及幼苗部位的不同而异。  相似文献   
248.
太原地区食用蔬菜中有害重金属铅、镉含量的分析研究   总被引:7,自引:0,他引:7  
采用原子吸收法测量了太原市市民经常食用的 7种蔬菜中有害重金属铅 (Pb)、镉 (Cd)的含量。结果表明 ,不同蔬菜对Pb ,Cd具有选择富积性 ,同一蔬菜不同器官对Pb ,Cd的富积作用也不同。  相似文献   
249.
聚天冬氨酸强化植物修复重金属污染土壤的研究   总被引:3,自引:3,他引:3  
为了探究PASP作为螯合剂在植物修复过程中的强化作用,采用土柱淋滤实验,研究不同浓度的聚天冬氨酸(PASP)对重金属铅(Pb)、镉(Cd)的活化能力(加入淋出量和空白对比)。结果表明,在一定浓度范围内,PASP对Pb和Cd的活化能力随PASP浓度的增加而增加。在盆栽模拟实验中发现,PASP对玉米修复重金属污染土壤有明显的强化作用。施用11 g/L PASP的玉米株高为114.4 cm,大于施加EDTA的植株(110.9 cm)。确定了PASP的最佳施用浓度为3 g/L和7 g/L,吸收重金属量分别为Pb 114.829 μg和84.662 μg、Cd 54.447 μg和66.915 μg,与EDTA相比对Cd的吸收量提高约10倍,对Pb的吸收量提高约3倍。进一步用水合肼和乙醇胺对PASP进行衍生化,淋洗实验证明用乙醇胺改性的PASP对重金属的活化效果得以提高,为修复被重金属污染的土壤提供了一种较好的络合剂。  相似文献   
250.
外源硒对镉胁迫下芥菜种子萌发生理效应的影响   总被引:2,自引:0,他引:2  
采用水培的方法,以芥菜为材料,研究了施加不同质量浓度外源硒(Se)(1,2,6,8 mg/L)对单一质量浓度镉(Cd)(10 mg/L)胁迫下芥菜种子萌发生理效应的影响。结果表明,单一质量浓度Cd胁迫显著抑制了芥菜种子的发芽(P<0.01),种子萌发过程中幼苗中的可溶性糖含量和淀粉含量显著低于对照(P<0.01),丙二醛(MDA)含量则明显高于对照( P<0.01),表明单一Cd对芥菜种子的萌发产生了一定程度的伤害;单一Cd胁迫下加入不同质量浓度外源Se后,能够有效地提高种子的发芽率,使可溶性糖和淀粉含量增加,MDA含量明显降低,表明外源Se可以有效地缓解Cd对芥菜种子萌发造成的伤害;当外源Se质量浓度为2 mg/L时,芥菜的发芽率、可溶性糖含量和淀粉含量为最大值,且与对照相比变化不大(P>0.05),但均显著高于单一Cd胁迫下的相应值(P<0.01),MDA含量最低,且显著低于对照和单一Cd胁迫下的相应值(P<0.01),表明当外源Se的质量浓度为2 mg/L时,对单一质量浓度Cd胁迫下芥菜种子萌发的缓解作用最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号