首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   14篇
  国内免费   13篇
林业   10篇
农学   10篇
基础科学   3篇
  71篇
综合类   110篇
农作物   5篇
水产渔业   34篇
畜牧兽医   1篇
园艺   3篇
植物保护   13篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   13篇
  2016年   16篇
  2015年   11篇
  2014年   7篇
  2013年   16篇
  2012年   14篇
  2011年   16篇
  2010年   18篇
  2009年   16篇
  2008年   12篇
  2007年   11篇
  2006年   16篇
  2005年   13篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   8篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
181.
人们认为利用活的生物体对农药污染土壤环境进行修复是一种被安全可靠的方法。本文综述分析微生物、植物对农药污染土壤的修复机制以及影响因素,对农药污染土壤的生物修复进行预测和展望,指出需要进一步研究的领域。  相似文献   
182.
从江蓠对海水的生物修复,琼脂糖及江蓠保健食品的研究现状综述江蓠的资源利用新情况。  相似文献   
183.
Advances in fungal-assisted phytoremediation of heavy metals: A review   总被引:1,自引:0,他引:1  
Trace metals such as manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) are essential for many biological processes in plant life cycles. However, in excess, they can be toxic and disrupt plant growth processes, which is economically undesirable for crop production. For this reason, processes such as homeostasis and transport control of these trace metals are of constant interest to scientists studying heavily contaminated habitats. Phytoremediation is a promising cleanup technology for soils polluted with heavy metals. However, this technique has some disadvantages, such as the slow growth rate of metal-accumulating plant species, low bioavailability of heavy metals, and long duration of remediation. Microbial-assisted phytoremediation is a promising strategy for hyperaccumulating, detoxifying, or remediating soil contaminants. Arbuscular mycorrhizal fungi (AMF) are found in association with almost all plants, contributing to their healthy performance and providing resistance against environmental stresses. They colonize plant roots and extend their hyphae to the rhizosphere region, assisting in mineral nutrient uptake and regulation of heavy metal acquisition. Endophytic fungi exist in every healthy plant tissue and provide enormous services to their host plants, including growth enhancement by nutrient acquisition, detoxification of heavy metals, secondary metabolite regulation, and enhancement of abiotic/biotic stress tolerance. The aim of the present work is to review the recent literature regarding the role of AMF and endophytic fungi in plant heavy metal tolerance in terms of its regulation in highly contaminated conditions.  相似文献   
184.
采用通气堆沤对石油烃污染土壤进行生物修复   总被引:20,自引:0,他引:20  
Laboratory simulation studies and a composting pilot study were conducted to evaluate the capacity of three strains of fungi, indigenous fungus Fusarium sp. and Phanerochaete chrysosporium and Coriolus Versicolor, to remediate petroleum-contaminated soils. In laboratory, the fungi were inoculated into a liquidculture medium and the petroleum-contaminated soil samples for incubation of 40 and 50 days 5 respectively. In the 200-day pilot study, nutrient contents and moisture were adjusted and maintained under aerobiccondition in composting units using concrete container (118.5 cm × 65.5 cm × 12.5 cm) designed specially for this study. The laboratory simulation results showed that all the three fungi were effective in degrading petroleum in the liquid culture medium and in the soil. At the end of both the laboratory incubations, the degradation rates by Phanerochaete chrysosporium were the highest, reaching 66% after incubation in liquid culture for 50 days. This was further demonstrated in the composting pilot study where the degradation rate by P. chrysosporium reached 79% within 200 days, higher than those of the other two fungi (53.1% and 46.1%), indicating that P. chrysosporium was the best fungus for bioremediation of soil contaminated with petroleum. Further research is required to increase degradation rate.  相似文献   
185.
[目的]评价α-淀粉酶与茶皂素对污染土壤中的Cd,Pb洗脱效果,为重金属污染土壤的修复提供更准确的科学依据。[方法]以重金属Cd,Pb污染的耕作层土壤为研究对象,利用α-淀粉酶和茶皂素复合淋洗对Cd,Pb污染土壤进行生态修复,并测定土壤淋洗前后Cd,Pb形态的变化。[结果]在反应时间12h,pH 4.0,反应温度30℃,茶皂素溶液和酶溶液配比4∶1条件下,Cd,Pb去除率分别为88.87%,43.97%。通过对修复前后重金属的形态分析,发现酸提取态、可还原物态的重金属较容易去除,淋洗后土壤中Cd和Pb均达到土壤环境质量Ⅱ级标准。[结论]α-淀粉酶和茶皂素组合对土壤中Cd,Pb有明显的去除效果,起到协同、增强作用。表明α-淀粉酶和茶皂素组合在生态修复重金属污染的土壤方面具有一定的应用前景。  相似文献   
186.
In this work, we present our experience in the engineered in situ biostimulation of a hydrocarbon-polluted subsoil of an old metal-working plant. The site had a long history of fuel, lubricant oil, and diesel spills and leakages that were initially treated by means of physico-chemical techniques. After one year of treatment, weathered hydrocarbons were firmly sorbed in the unsaturated zone, limiting the effectiveness of the physico-chemical methods being applied. Also, low nutrient and dissolved oxygen levels limited natural attenuation yields. Therefore, a bioremediation approach based on the injection of hydrogen peroxide, an oleophilic fertilizer, and a surfactant was applied. Total petroleum hydrocarbons and gas chromatography-mass spectrometry determinations were performed as a chemical means of monitoring the process. Microbial populations, including the presence of hydrocarbon-degrading bacteria, were simultaneously analyzed during the process, using enrichment techniques and confocal laser scanning microscopy observations with fluorescent indicators. Hydrocarbon-degrading bacteria were already present in the polluted subsoil prior to the implementation of this bioremediation technique and increased noticeably during the first 2 months of treatment. Hence, the suitability of the nutrient and oxygen amending approach was confirmed as further demonstrated by chemical determinations.  相似文献   
187.
Intention, Goal and Background  Contaminated sediments represent a significant, worldwide environmental problem since they contain a mixture of different xenobiotics and heavy metals. The presence of mixed contamination presents a unique set of obstacles for remediation efforts. Often sediment remediation occurs as an ex-situ application (i.e., after dredging) in an attempt to minimize some of the problems. However, dredging poses it’s own issues. It does not address contaminated water and often material is not completely removed thereby leaving a long-term residual contamination source in the waterway. Objective  The potential of bio remediation to treat sediments contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and heavy metals was addressed. The primary objective was to assess two delivery mechanisms for microbial inoculation to facilitate in-situ remediation of PAH contaminated sediments. Methods  Simulated river beds were constructed to mimic the Mahoning River. Contaminated sediment from the river was added to each reactor at a uniform depth, followed by the addition of river water. Fifteen inoculation points were used in each simulated river bed to ensure adequate microbial populations. One tank was inoculated with an acclimated bacteria solution as a free suspension. The other tank was inoculated with an attached growth biofilm system. Sediment samples were taken throughout the experiment and the percent PAH degradation determined. Water characteristics (DO, pH, bacterial activity, etc.) were also tracked as corroborating evidence. Results and Discussion  The monitoring sites indicated that an attached growth system was more effective, and achieved a 99% PAH degradation efficiency at some of the sampling sites. Tracking individual PAH compounds also indicated a higher overall microbial activity with the attached growth system. This activity was evident by the formation and subsequent biodegradation of lower molecular weight degradation byproducts. However, more of the sediment area was treated by the free suspension inoculum due to the ease of microbial migration. Conclusions  The applicability of using an aerobic microbial consortium composed ofMycobacterium sp., Pseudomonas aeruginosa, andPseudomonas flourescens to treat contaminated sediment was demonstrated. In addition, it was found that introducing the consortium as an attached growth was more effective than when delivered as a free suspension. Recommendation and Outlook  The results demonstrated that the consortium was effective at treating the PAHs present in the contaminated soil. An additional study to evaluate the consortium’s effectiveness at remediating the PCB present in the sediment is warranted. Optimization of the consortium-nutrient combination could enable a treatment approach to effective for all the organic contaminants present. Although this would not address the heavy metals present in the sediment, it would afford a great opportunity at remediating a severely contaminated sediment system.  相似文献   
188.
Carbaryl is one of the carbamate insecticides widely used in agricultural fields and forests. To restore the environment contaminated with carbaryl application, it is suggested that microbial degradation of carbaryl could be an effective method. Two novel bacterial strains degrading rapidly carbaryl were isolated from forest soil. These strains designated as 19B and 19C were identified as novel species ofArthrobacter, respectively based on main bacterial properties including GC-content, major fatty acid composition, major menaquinone isoprenologue and 16S rRNA gene sequence analysis. Strain 19B started to degrade carbaryl within several hours and completely degraded 50μg/ml carbaryl in a mineral salt medium within a day. Similarly, strain 19C showed a high degradation ability. Gas chromatography-mass spectrometry analysis showed that the major degradation metabolite is 1-naphthol (M=144) and minor metabolites are 1,4-naphthalenedione (M=158) and 1,4-naphthalenediol (M=160), suggesting a pathway of carbaryl degradation by both strains. This research was supported by a Grant-in-Aid from the Ministry of Agriculture, Forestry and Fisheries, Japan.  相似文献   
189.
杨琦  尚海涛  李惠娣 《中国沼气》2006,24(2):16-20,24
四氯乙烯(PCE)在工业上广泛使用和不合理的处置,已经成为地下水中普遍存在的有毒有害有机污染物,同时PCE也是世界上公认的"三致"(致癌、致畸、致突变)化合物.目前PCE的地下水生物修复研究已成为国内外专家学者日益关注的研究热点问题.本文论述了PCE的去除的方法,包括物理、化学、生物方法,及其去除的机理;论述了厌氧降解PCE微生物种类和PCE降解动力学的研究进展.同时还对PCE基因工程菌构建,厌氧共代谢基质以及地下水的生物修复等方面进行了综述,以期对地下水中PCE的生物修复有一个全面的认识,对地下水PCE的生物修复提供科学的证据,为保障地下水饮用安全提供技术保障.  相似文献   
190.
黄孢原毛平革菌对土壤中五氯酚的降解   总被引:2,自引:0,他引:2  
 研究了白腐真菌典型种黄孢原毛平革菌(Phanerochaete chrysosporium)对土壤中五氯酚(pentachlorophenol,PCP)的生物降解。结果表明,在灭菌土壤中PCP初始浓度为71.62 mgkg-1干土条件下,P.chrysosporium生长和对PCP降解的最适接种量为0.10 mlg-1干土,P.chrysosporium最适生长温度为37℃,对PCP降解的最适宜温度为30~37℃,菌体生长和PCP降解的最适土壤含水量为25%。灭菌土壤中PCP的初始浓度为50.05~175.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号