首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   34篇
  国内免费   44篇
林业   63篇
农学   34篇
基础科学   5篇
  385篇
综合类   230篇
农作物   69篇
水产渔业   24篇
畜牧兽医   77篇
园艺   53篇
植物保护   25篇
  2024年   5篇
  2023年   11篇
  2022年   34篇
  2021年   36篇
  2020年   36篇
  2019年   36篇
  2018年   7篇
  2017年   42篇
  2016年   43篇
  2015年   43篇
  2014年   26篇
  2013年   73篇
  2012年   59篇
  2011年   55篇
  2010年   44篇
  2009年   63篇
  2008年   29篇
  2007年   70篇
  2006年   53篇
  2005年   28篇
  2004年   34篇
  2003年   29篇
  2002年   16篇
  2001年   18篇
  2000年   12篇
  1999年   14篇
  1998年   8篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1956年   1篇
排序方式: 共有965条查询结果,搜索用时 421 毫秒
21.
农田土壤有机碳库是全球碳循环的重要组成部分,其积累和分解直接影响陆地生态系统碳贮藏与全球碳平衡。土壤团聚体是土壤结构的物质基础和土壤肥力的重要载体,也是土壤有机碳的固定场所。稳定~(13)C同位素示踪技术是研究土壤碳动态变化的有效手段,能够揭示新输入碳在土壤及团聚体中赋存状态、周转过程以及微生物的调节机制。本文主要归纳与阐述了稳定~(13)C同位素示踪技术在农田土壤有机碳循环及土壤团聚体固碳机理方面的研究进展,提出~(13)C同位素示踪技术在未来土壤碳循环和固碳机制方面的主要研究方向。  相似文献   
22.
为探明生育后期干旱复水对双季杂交晚稻不同产量潜力品种产量的影响及其形成的生理机制,选择超级稻品种五丰优T025和对照品种金优207,于抽穗后进行干旱8d复水处理,分析了2个品种结实和产量、干旱前后倒二叶稳定碳同位素组成(δ13C)及内源激素含量的差异性。结果表明,干旱复水处理下2个品种水稻的结实率、千粒重及单株产量较对照(保持水层)表现出不同程度下降。其中,结实率五丰优T025和金优207分别下降12.07%和7.67%,千粒重下降5.23%和9.09%,单株产量下降13.54%和27.14%,差异均达显著或极显著水平,未发现产量补偿效应。抽穗后干旱处理下倒二叶δ13C值,五丰优T025大幅上升,复水后呈现出先下降,至第6天又开始上升的特点,金优207则大幅下降,复水后呈现先上升后下降再上升的特点,五丰优T025较金优207干旱复水处理与对照之间的差距更大。总体上,对照条件下,抽穗至其后20d,随生育推进,2个品种倒二叶内源ABA和GA3含量呈上升而IAA含量则下降趋势,ZR表现出先上升再下降特点。干旱处理下2个品种表现为ABA含量上升,复水后呈先下降后上升特点,五丰优T025较金优207处理与对照之间差距更大;干旱复水处理条件下:2个品种IAA含量均下降,五丰优T025处理与对照间的差距明显小于金优207;五丰优T025 GA3含量表现出先上升后下降再上升,金优207表现出干旱处理结束日急剧下降至最低点,复水后缓慢上升特点;2个品种ZR含量呈现出先上升至最高值再下降特点,五丰优T025较金优207处理与对照之间差距更小。抽穗后干旱处理将启动稻株体内抗衰老机制,复水后将在一定程度一定时间内激活稻株体内生长促进因子并抑制生长抑制因子,但其效果十分有限。  相似文献   
23.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   
24.
Peat land has been considered as an alternative type of land for agricultural development especially in the tropics. In the present study, the N-supplying capacity, one of the most important soil properties in terms of crop production, of peat soils was examined. Ten peat soil samples were collected from Indonesia, Malaysia, and Japan. Gross N mineralization in the soil samples was estimated using a zero-order model, and kinetic parameters of mineralization were determined using a simple type model. Soil organic matter composition was investigated using 13C CPMAS NMR. Mineralization potential ( N 0), apparent activation energy ( E a), and mineralization rate constant ( k ) ranged between 571–2,445 mg kg−1, 281–8,181 J mol−1, and 0.009–0.020 d−1, respectively. Although none of the parameters showed a significant correlation with the soil C/N ratio, a negative correlation was observed between the k value and the ratio of the proportion of alkyl C in total C to that of O -alkyl C estimated by 13C CPMAS NMR. The latter suggested that the k values were higher in the peat soils relatively rich in readily decomposable organic matter including carbohydrates.  相似文献   
25.
In this study, we measured the incorporation of recent photosynthate-C inputs into active rhizosphere fauna (earthworms, enchytraeids, mites and collembolans) in an upland grassland soil under natural environmental conditions. This was achieved by means of a 13CO2 pulse-chase experiment made during the growing season, followed by a 20-day dynamic sampling of soil fauna for 12C/13C analysis by IRMS. The effect of post-13C labelling defoliation (cutting) on fauna 12C/13C ratios was also examined.Results showed that earthworms made up over 93% of the extracted fauna biomass, while mites, collembolans and enchytraeids together accounted for less than 7%. All fauna groups showed evidence of tracer 13C in their tissues within a week of 13CO2 pulse labelling in both control and cut treatments. Cutting significantly increased the amount of tracer 13C entering the organisms (P=0.0002). Similarly, the fauna group also had a significant effect (P=0.0001). Time did not have any effect on fauna 13C content between groups as differences were only significant at the last sampling occasion. The interaction time×animal group, however, had a significant effect (P=0.0054).Collembolans accounted for most of the tracer 13C measured within the fauna biomass, i.e. mean±standard deviation of 44.78±12.75% and 44.29±14.69% of fauna 13C in control and cut treatments, respectively. Mites and earthworms contained between 22.13% and 28.45%, and enchytraeids less than 6% of the tracer 13C. We conclude that, during the growing season, there was a rapid incorporation of recent photosynthate-C into rhizosphere mesofauna. This carbon transfer was most significantly increased by defoliation in mites and collembolans (P<0.01). These results provide evidence that soil foodweb carbon dynamics are not solely underpinned by detrital decomposition but are also affected by short-term plant rhizodeposition patterns.  相似文献   
26.
中国北方13省土地利用景观格局变化分析(1989~1999)   总被引:25,自引:3,他引:25  
以北方13省为研究区,对该区1989~1999年的宏观土地利用景观格局变化进行了分析。结果表明:决定该区景观格局的主体要素类型为草地、难利用地和林地.其次为耕地。1989~1999年期间,区内景观异质性程度在逐渐提高.土地利用向着多样化和均匀化方向发展。景观空间格局变化特征是:耕地、林地和城镇用地破碎度最大;林地、草地和水域受到人类活动的严重干扰.斑块空间分布不断分散和破碎化.分离度和破碎度指标增加。草地的破碎度增加最为显著,严重影响该区农牧业的正常生产。景观要素之间的转化关系主要表现为林、草地和耕地之间的相互转化.以及草地退化为难利用地。表征了该区生态建设实践和生态破坏活动的相互作用以及草地的严重退化趋势.说明北方13省存在较为严重生态环境问题.急需解决。  相似文献   
27.
We tested the inter‐specific variability in the ability of three dominant grasses of temperate grasslands to take up organic nitrogen (N) in the form of amino acids in soils of differing fertility. Amino acid uptake was determined by injecting dual labeled glycine‐2‐13C‐15N into the soil, and then measuring the enrichment of both 13C and 15N in plant tissue after 50 hours. We found enrichment of both 13C and 15N in root and shoot material of all species in both soils, providing first evidence for direct uptake of glycine. We show that there was considerable inter‐specific variability in amino acid uptake in the low fertility soil. Here, direct uptake of amino acid was greater in the grass Agrostis capillaris, which typically dominates low fertility grassland, than Lolium perenne, which inhabits more fertile sites. Direct uptake of amino acid for Holcus lanatus. was intermediate between the above two species. Unlike in the low fertility soil, there was no difference in uptake of either 13C or 15N by grasses in the high fertility soil, where uptake of mineral N is thought to be the major mechanism of N uptake of these grasses. Overall, our findings may contribute to our understanding of differences in competitive interactions between grasses in soils of different fertility status.  相似文献   
28.
Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C sequestration and improve soil quality. We used density fractionation and 13C natural abundance to assess changes in SOM in an Oxisol previously under a cerrado sensu-stricto following 30 years of cultivation. The objectives of the study were to: (i) evaluate the long-term impact of tillage systems on SOM stocks in a Dark Red Latosol (Oxisol) from the Cerrado Biome, and (ii) better understand the dynamics of SOM in different density fractions of this soil. Cultivation led to compaction, which significantly increased soil bulk density. This resulted in the systematic overestimation of C and N stocks in cultivated areas when compared to the natural cerrado. Conversion of the cerrado into cropland using plow tillage (PT) or no-tillage (NT) system did not alter the total C (100 Mg ha−1) and N (7 Mg ha−1) stocks in the first 45 cm depth at the end of 30 years of cultivation. However, about 22% of the total C was replaced by C from maize. The relative replacement of C decreased following the order: free light fraction (F-LF)>heavy fraction (HF)>occluded light fraction (O-LF). The low substitution in the O-LF was attributed to a possible presence of charcoal. Converting cerrado into cropland significantly decreased F-LF quantity. The proportions of C replacement in this fraction were higher in PT than NT, suggesting a faster turnover in PT. Nevertheless, because most C (95%) was held in the HF, C dynamics in the whole soil were controlled by the behavior of this fraction. The maintenance of C levels even at the end of 30 years of cultivation and the lack of differentiation between NT and PT were attributed to the high clay contents and Fe+Al oxi-hydroxides concentrations of the studied soil as well as to a sufficient C supply by the maize crop.  相似文献   
29.
This study compared soil physical, chemical, and biological characteristics between natural grassland and recently abandoned rice fields in order to identify those variables that might explain the observed increase of Camponotus punctulatus anthills in abandoned rice paddy fields from Northern Argentina. Mainly due to a reduction of macropores and mesopores, overall porosity decreased by around 6% and bulk density was about 7% greater, in the 0- to 10- and 10- to 20-cm layers of the abandoned rice fields. Carbon and nitrogen content from organic matter increased (29% and 41% respectively for the 0- to 20-cm horizon) during cultivation but decreased (38% and 24%) 2 years after the last rice harvest. Forty percent of natural grassland-organic matter and 30% of abandoned rice-organic matter mineralized in less than 2 years. There was a different community structure between the abandoned rice fields and the undisturbed natural grassland and only a 20.6% (i.e. only 19 species from a total of 92) overlap in species composition. The abundance of macrofauna was greater in abandoned rice fields (2,208 individuals m–2) in comparison to natural grasslands (288 ind m–2) due to higher densities of small earthworms and Camponotus punctulatus ants; however, the Shannon index showed lower values in comparison to natural grasslands. Earthworms and C. punctulatus in the abandoned rice fields showed a change in their 13C signature indicating a switch in diet from natural grassland organic matter (C4) to organic matter from rice (C3). Our results indicate that the effects of rice cultivation practices did not seem to produce any physical or trophic limitations to recolonization by the macrofauna. It seems that changes in overall soil conditions have favored a change in the construction behavior of C. punctulatus which, in combination with population increases, could explain the explosion in number of anthills.  相似文献   
30.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号