首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3537篇
  免费   80篇
  国内免费   549篇
林业   1338篇
农学   280篇
基础科学   372篇
  647篇
综合类   1161篇
农作物   120篇
水产渔业   54篇
畜牧兽医   100篇
园艺   61篇
植物保护   33篇
  2024年   38篇
  2023年   33篇
  2022年   81篇
  2021年   113篇
  2020年   122篇
  2019年   140篇
  2018年   82篇
  2017年   102篇
  2016年   188篇
  2015年   140篇
  2014年   160篇
  2013年   159篇
  2012年   224篇
  2011年   199篇
  2010年   173篇
  2009年   190篇
  2008年   167篇
  2007年   148篇
  2006年   175篇
  2005年   171篇
  2004年   172篇
  2003年   140篇
  2002年   145篇
  2001年   138篇
  2000年   137篇
  1999年   105篇
  1998年   89篇
  1997年   61篇
  1996年   61篇
  1995年   58篇
  1994年   53篇
  1993年   47篇
  1992年   32篇
  1991年   38篇
  1990年   38篇
  1989年   19篇
  1988年   11篇
  1987年   12篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有4166条查询结果,搜索用时 15 毫秒
61.
为探明饮料用原料茶的适宜干燥工艺,将不同干燥方式、干燥程度绿茶原料加工成茶饮料,研究其浸出特性及品质稳定性。结果表明:(1)低温浸提时,茶多酚浸出量以炒干最高,高温时以烘炒焙、烘炒烘处理最高。氨基酸的浸出量则均以烘干、烘焙处理最高。(2)烘干、烘焙样品在灭菌前后及贮藏期间的L值显著为高,平均值较其余处理高2.035~3.905;抗色变能力同样以烘干较强,低温贮藏时的-a/b值较炒干处理样高19.5%。(3)感官风味比较显示,大多数处理茶汤在灭菌后均呈现出绿黄或黄绿色,香气带熟,但烘干处理仍能保持绿明亮,且滋味、香气未显熟味;贮藏期间的风味稳定性也以烘干样为最佳。综合分析,饮料用原料茶的干燥工序宜采用烘干工艺,且烘干程度以5%~6%为佳。  相似文献   
62.
The breadmaking quality of wheat is affected by the composition of gluten proteins and the polymerisation of subunits that are synthesised and accumulated in developing wheat grain. The biological mechanisms and time course of these events during grain development are documented, but not widely confirmed. Therefore, the aim of this study was to monitor the accumulation of gluten protein subunits and the size distribution of protein aggregates during grain development. The effect of desiccation on the polymerisation of gluten proteins and the functional properties of gluten were also studied. The results showed that the size of glutenin polymers remained consistently low until yellow ripeness (YR), while it increased during grain desiccation after YR. Hence, this polymerisation process was presumed to be initiated by desiccation. A similar polymerisation event was also observed when premature grains were dried artificially. The composition of gluten proteins, the ratios of glutenin to gliadin and high molecular weight-glutenin subunits to low molecular weight-glutenin subunits, in premature grain after artificial desiccation showed close association with the size of glutenin polymers in artificially dried grain. Functional properties of gluten in these samples were also associated with polymer size after artificial desiccation.  相似文献   
63.
基于BP神经网络的旁热式辐射与对流粮食干燥过程模型   总被引:2,自引:0,他引:2  
针对旁热式辐射与对流粮食干燥机的干燥特点,建立了一种粮食干燥机干燥过程的BP神经网络预测模型。该模型采用了3层神经网络结构(8-10-1),模型输入为粮食干燥机的8个变量,模型输出为出口粮食水分比或干燥速率。通过编写Matlab建模程序,基于实际干燥实验的样本数据训练与测试网络,实现了红外辐射与对流联合干燥的动力学模型,并给出了相应的模型数学表达式,模型预测的出口水分比与干燥速率的R2分别为0.998 9和0.998 0,均方根误差分别为0.009和0.004 1,预测结果与实际测量数据拟合较好;另外,结合实验干燥条件对模型干燥性能的预测结果进行了分析与总结,并依据同样方法建立了顺逆流粮食干燥过程的出口粮食水分比预测模型,对比了2种干燥方式的干燥性能。仿真预测表明用BP神经网络方法建模简单,具有自适应性、灵活性和自学习性等特点,相比于其他粮食干燥的经验数学模型,能综合考虑多种影响因素,可为红外辐射与对流联合干燥过程提供一种新的建模方法。  相似文献   
64.
以枸杞为对象,研究其在相同温度和湿度、不同强度直流高压电场下的干燥特性;检测干燥后枸杞的收缩率、复水率;测量高压电场和干燥箱干燥后枸杞内部多糖和维生素C含量;计算了舍伍德数、传质增强因子以及水分有效扩散系数;采用10种常用的薄层物料干燥数学模型和3个统计参数对干燥数据进行了模拟和比较。结果表明:在直流高压电场下枸杞的干燥速率明显比对照组的干燥速率大,在同一电压下枸杞的干燥速率随着干燥时间的延长逐渐减小,枸杞的干燥速率随着电压的提高而增加,单位能耗也随着电压的增加而增加。在直流高压电场下枸杞的复水率比对照组的复水率高,单因素方差分析表明,在直流高压电场下枸杞的复水率与对照组的复水率之间存在显著性差异,但收缩率之间不存在显著性差异。高压电场干燥比干燥箱干燥更好地保存了枸杞内部的营养成分。传质增强因子随着电压的增加呈线性增长关系,枸杞内部水分有效扩散系数随着电压的增加而增加。通过统计参数分析,发现所选的10个数学模型都可以用来描述枸杞在直流高压电场下的干燥过程,其中Midill and Kucuk模型最适合用来描述直流高压电场中枸杞干燥曲线的变化规律。高压电场影响枸杞表面的微观结构。这为优化直流高压电场干燥枸杞工艺,提高干燥效率和发展枸杞干燥技术提供了线索和实践指导。  相似文献   
65.
石启龙  王瑞颖  赵亚  刘彦爱 《农业机械学报》2017,48(9):337-343,311
桑葚富含多酚类物质,具有一定的营养与保健功能。多酚类物质在加工及贮藏过程中非常不稳定,喷雾干燥法微胶囊包埋是保护生物活性成分常采用的方法。但是,果汁喷雾干燥过程中极易出现黏壁现象,导致粉末回收率较低。基于此,研究不同比例乳清分离蛋白(WPI)与麦芽糊精(MD)对喷雾干燥桑葚粉理化特性的影响。结果表明,进料液中以少量WPI取代MD能显著提高桑葚粉的回收率,WPI较高的表面活性与良好的成膜性是使桑葚粉回收率提高的主要原因。随着进料溶液中WPI质量分数的增加,桑葚粉含水率增加;水分活度、堆积密度、粒径、水溶性指数和玻璃化转变温度呈降低趋势,而吸湿性则无明显变化。随着进料溶液中WPI质量分数的增加,桑葚粉L值、b值增加,a值降低,色差ΔE增加。桑葚粉的总酚含量与清除自由基能力随进料溶液中WPI质量分数的增加呈降低趋势。当进料溶液中桑葚汁/MD/WPI质量比为65∶(34.5~30.0)∶(0.5~5.0)时,既能有效解决黏壁问题,又能较好地抑制桑葚汁中多酚类成分降解,使桑葚粉具有较高的抗氧化能力。  相似文献   
66.
为了解决现有红枣干燥机自动化程度低、劳动强度高和不能很好地满足红枣干燥工艺需要的问题,通过对国内外自动化控制系统的研究和借鉴,设计了基于LabVIEW的红枣干燥机的控制系统。同时,设计了LabVIEW控制系统的前面板和程序框图,完成了外部硬件电路的设计。试验表明:该LabVIEW控制系统可以实现鼓风机和物料提升机的启动和停止,3路温度的采集、分析、显示和对加热管的控制,3路湿度的采集、分析、显示和对排湿阀门的控制,2路风速的采集和显示,以及6个进/出风通道按照设定的时间间隔实现5种工作模式的切换。  相似文献   
67.
为了准确揭示山药片红外联合热风干燥传热传质机理,在考虑山药片收缩变形特性的基础上,通过有限元软件COMSOL6.1建立了“温度场-湿度场”多场耦合的山药片红外联合热风干燥传热传质模型。模拟研究基于山药片在不同温度(50、60、70 ℃)下收缩变形的传热传质,并通过试验进行验证。分析不同温度对山药片品质(色差、复水比、多糖和尿囊素含量)的影响。结果表明:1)山药片体积比随干燥温度的升高而增加,在干燥温度分别为50、60、70 ℃时,其值分别为34.55%、37.23%、39.04%。2)在干燥温度为50、60、70 ℃时,红外联合热风干燥收缩模型可准确预测山药片干燥过程中干燥温度和含水率,其决定系数R2分别为0.973、0.976、0.981和0.983、0.984、0.974。3)山药片外部温度升高,表面水分开始蒸发,形成水分梯度。随着干燥的继续,红外热量在山药片内部不断积累,导致内部温度升高,水分向外扩散,进而减小了内外水分梯度。随着干燥温度的升高,增加了山药片温度和湿度梯度,促进了热量和质量的传递,提高了水分迁移的速率。4)在60 ℃时,干燥品质最优,其色差为7.49、复水比为2.65 kg/kg、多糖含量为24.17 mg/g、尿囊素含量为2.66 μg/g。该模型为其他物料在红外联合热风干燥技术的模拟研究提供有益借鉴。  相似文献   
68.
为提高红托竹荪干燥品质并获得最佳干燥工艺,采用真空红外干燥(vacuum infrared drying,VID)、气流冲击干燥(air impingement drying,AID)、控湿干燥(moisture control drying,MCD)等不同干燥方式对红托竹荪进行对比研究,以热风干燥(hot air drying,HAD)作为对照组,研究不同干燥方式及温度对红托竹荪干燥品质的影响。试验结果表明不同干燥方式对竹荪宏观品质产生了显著影响,其中MCD可获得最小的色差?E和收缩率,AID则能够保证较高的复水比;干燥速率方面,MCD在前期能够获得较高的干燥速率,但后期干燥速率会放缓,而AID在整个干燥过程都具有较高的干燥速率,干燥时间较短;在成分保留上,MCD可以保留较高含量的多糖、三萜和黄酮,而采用VID可以有效保护多酚。单位能耗随干燥温度的升高明显降低,不同方式下VID的干燥能耗值整体偏大,MCD的单位能耗最低(18.82 kW·h/kg)。通过主成分分析法,上述干燥方式对红托竹荪综合评分后得到的结果排序为:MCD>AID>VID>HAD,MCD干燥方式中采...  相似文献   
69.
农产品的烫漂与干燥是农产品加工的关键技术。农产品蒸汽烫漂与热风干燥箱是集烫漂与干燥一体的新型农产品绿色保质低碳智能干燥技术装备。农产品蒸汽烫漂与热风干燥箱内部流场均匀性直接影响着农产品烫漂与干燥效果。为提高其内部速度均匀性与温湿度均匀性,同时减少冷凝现象发生,采用计算流体力学(computational fluid dynamics,CFD)方法建立蒸汽烫漂与热风干燥箱模型,对其送风方式和送风口数量进行研究。结果表明:侧送侧回的送风方式在速度场以及温湿度场的均匀性总体优于上送下回,能量利用系数提高约18%,箱内壁面冷凝面积小于上送下回。仿真研究表明,当送风口数量为4个时,箱内的温度场和相对湿度场均匀性更好,能量利用系数最高。试验表明,蒸汽烫漂与热风干燥箱的试验值和仿真值最大温度偏差为2.3℃,相对湿度误差不超过1.3%,误差在合理范围内,仿真结果可靠,研究结果可为农产品低碳智能干燥新技术的研究提供参考。  相似文献   
70.
芦荟真空冷冻干燥特性的试验研究   总被引:1,自引:0,他引:1  
为提高芦荟冷冻干燥速率和品质,在通过物理的方法获得芦荟的共晶点温度的基础上,单因素试验研究干燥室压力、加热搁板温度、预冻速度和物料厚度对芦荟的含水量和冷冻干燥时间的影响。利用芦荟质量的模糊综合评判法,获得芦荟的冷冻干燥的较优工艺参数范围:芦荟切片厚度5~6mm,干燥室压力100~108Pa,加热搁板温度36~38℃,预冻速率-0.40~-0.45℃/min。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号