首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2777篇
  免费   83篇
  国内免费   168篇
林业   337篇
农学   295篇
基础科学   103篇
  210篇
综合类   1241篇
农作物   175篇
水产渔业   43篇
畜牧兽医   208篇
园艺   320篇
植物保护   96篇
  2024年   12篇
  2023年   31篇
  2022年   61篇
  2021年   60篇
  2020年   70篇
  2019年   95篇
  2018年   54篇
  2017年   91篇
  2016年   129篇
  2015年   124篇
  2014年   151篇
  2013年   123篇
  2012年   216篇
  2011年   246篇
  2010年   206篇
  2009年   197篇
  2008年   187篇
  2007年   175篇
  2006年   158篇
  2005年   122篇
  2004年   87篇
  2003年   74篇
  2002年   45篇
  2001年   43篇
  2000年   41篇
  1999年   32篇
  1998年   26篇
  1997年   41篇
  1996年   18篇
  1995年   16篇
  1994年   20篇
  1993年   17篇
  1992年   10篇
  1991年   20篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1977年   1篇
  1963年   1篇
排序方式: 共有3028条查询结果,搜索用时 93 毫秒
71.
黄土半干旱区枣林深层土壤水分消耗特征   总被引:10,自引:0,他引:10  
黄土区人工经济林普遍出现利用性土壤干层,制约着植被的恢复与重建。为了准确计算黄土半干旱区密植高产枣林(Ziziphus jujube Mill.)深层土壤(2 m以下)水分消耗量,采用根钻法(洛阳铲)分层获得从地表到细根分布最大深度范围内的土壤含水率。结果表明:枣林深层土壤水分消耗是一个逐渐加深、逐渐向下的过程。2、4、9和12 a生枣林深层土壤水分消耗量分别为0、29.6、149.9和155.7 mm,可再供水量分别为203.7、167.7、35.5和29.7 mm;枣林生长第9年后,2~4 m土层几乎没有可利用的水分,现有降水和滴灌已经不能满足枣树的耗水需求,枣林吸收土壤水分有向深处延伸的趋势。以降水入渗最大深度为上界、细根分布最大深度为下界计算的深层土壤水分消耗量,能更准确地评估林地利用性土壤干层的程度和深度。  相似文献   
72.
利用可见/近红外光谱技术对梨枣轻微损伤的分类判别建模方法进行研究。分别采用PLS-LDA(线性)和LS-SVM(非线性)建立判别模型,分析比较不同预处理方式和建模波段对模型精度的影响。结果表明:经9点平滑预处理后的短波近红外(780~1100nm)PLS-LDA模型判别效果最佳,校正集和预测集的正确识别率分别达到97.8%和96.7%。  相似文献   
73.
针对红枣红外辐射干燥含水率的变化具有非线性和时变性、很难利用现有的模型构造一个数学模型来描述其变化规律的问题,利用Mat Lab神经网络工具箱和红枣红外辐射干燥特性试验数据建立了神经网络预测模型。通过对实测值和模型预测值进行分析研究,得出利用BP神经网络可以较快速、准确地建立模型来描述含水率的变化规律,且模型的预测值与试验测试值误差较小,能很好地实现在线预测的效果。  相似文献   
74.
间接地下滴灌灌溉深度对枣树根系和水分的影响   总被引:4,自引:0,他引:4  
为探讨间接地下滴灌及导水装置埋深(灌溉深度)对南疆极端干旱区矮化密植红枣根系生长分布特征及产量、水分利用率的影响,试验设间接地下滴灌(ISDI)3个导水装置埋深水平,分别为20、27、35 cm,以地表滴灌(DI)为对照,共4个处理,经过2~4 a的田间试验后,采用环状壕沟分层挖掘法对以枣树树干为中心,半径为1 m的90°扇形区域内0~100 cm土层进行根系取样。结果表明,相对于DI,ISDI下各根系分布较均匀,生长方向基本向下延伸;ISDI显著增加了根径小于5 mm根系根长密度,细根(根径小于2 mm)是DI的3倍,但减少了根径大于5 mm根系根长密度,相对增加了20~40 cm土层根系根长占总根长的比率;垂直方向上随着灌溉深度的增加表层根系根长密度相对减少,深层相对增加;水平方向上各处理根系根长密度基本呈现随着与树干水平距离的增加而减小的趋势,但在0~20 cm土层减小的幅度较大,在20~40 cm土层其减小的幅度较小;随着灌溉技术由DI到ISDI及灌溉深度的增加,细根分布基本呈现出由"宽浅型"向"深根型"发展的趋势。相对DI,ISDI具有较好的节水增产效果,提高产量及灌溉水生产率最大达20%。建议幼龄期南疆密植枣树的导水装置埋深为27~35 cm。研究为极端干旱区枣树适宜灌溉技术的选择及其技术要素的制定提供依据。  相似文献   
75.
为了从混合的饱满红枣和干瘪红枣中识别出干瘪红枣,首先分析了颜色空间模型的特性,选择灰度图、RGB颜色空间模型的R分量、L*a*b*颜色空间模型的a*分量,并使用不同的梯度算子作为对比;然后通过形态学运算、逻辑运算去除异常梯度,进行梯度归一化变换;最后采用归一化的梯度直方图作为红枣表面的纹理特征表示方法,并计算其梯度分布不均匀性作为判别准则。利用12通道红枣分选机采集240幅饱满与202幅干瘪红枣图像作为样本图像。实验结果表明,采用简单梯度算子对L*a*b*模型的a*分量提取纹理信息效果最好,误判率为0.83%,正确识别率高达99.01%。  相似文献   
76.
In the hills of north–west India, maize (Zea mays L.)-wheat (Triticum aestivum L.) is the dominant cropping system. However, rainfed wheat suffers from lack of optimum moisture at sowing. Field experiments were conducted for 3 years on a silty clay loam (Typic Hapludalf) to evaluate the effectiveness of mulches and conservation tillage for rainfed wheat in mitigating this problem. The treatments were ten factorial combinations of five mulch-tillage practices and two nitrogen levels (N60 and N120 kg ha−1). Mulch treatments consisted of application of 10 Mg ha−1 (dry weight basis), to previous standing maize, of either wild sage (Lantana camara L.) or eupatorium (Eupatorium adenophorum Sprengel) in combination with either conventional or conservation (minium) tillage prior to wheat sowing. These alternative practices were compared to the conventional farmer practice of soil tillage after harvest of maize with no mulch. The application of these weed mulches to standing maize maintained friable soil structure owing to a five fold higher mean population of earthworms underneath mulch. Mulches resulted in 0.06–0.10 m3 m−3 higher moisture in the seed-zone when wheat was sown compared with the conventional farmer practice of soil tillage after maize harvest. Mulch-conservation tillage treatments favourably moderated the hydro-thermal regime for growing a wheat crop. The mean root mass density under these treatments at wheat flowering was higher by 1.27–1.40 times over the conventional farmer practice during the 3 year study. Conservation tillage holds promise because it does not require elaborate tillage and may ultimately reduce animal draught in the hilly regions. Recycling available organic materials having no fodder value coupled with conservation tillage may help enrich the soil environment in the long-term. The practice also offers gainful use of these obnoxious weeds that cause great menace in grass and forest lands in the region.  相似文献   
77.
Previously, there has not been any in situ conservation sites for crop germplasm within the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS). Using morphologic and molecular (SSR markers) techniques, we assessed the genetic variation present in populations of rock grape (Vitis rupestris Scheele), a native American grape species, throughout its range. We identified seven in situ conservation sites for rock grape using a strategy based on morphologic and molecular data, taxonomic information, population size and integrity, and landholder commitment. In collaboration with federal and state landholding agencies, we have established the first NPGS in situ conservation sites for American wild relatives of a crop.  相似文献   
78.
针对鲜食红枣成熟后贮藏期短,商品性会随贮藏期延长而降低等问题,以宣城圆枣为试材,采用5个浓度(0.1%、0.25%、0.5%、1.0%、1.5%)壳聚糖与浓度为0.1%的山梨酸混合,配制成复合保鲜液,对其进行涂膜保鲜处理。结果表明:在4℃条件下,壳聚糖-山梨酸复合涂膜处理在一定程度上能延缓宣城圆枣果实失重率与腐烂率上升的速度,同时抑制硬度及VC含量的下降,从而延缓果实的成熟衰老进程,提高贮藏品质,延长货架期。通过对各项果实品质指标数据的综合分析得出,复合涂膜溶液的最佳使用浓度为0.25%壳聚糖+0.1%山梨酸。  相似文献   
79.
膨化温度对冬枣变温压差膨化干燥特性的影响   总被引:2,自引:1,他引:2  
为探索冬枣变温压差膨化干燥过程中水分的变化规律,研究了不同膨化温度对冬枣变温压差膨化干燥特性的影响,并建立了变温压差膨化干燥动力学模型.试验结果表明:变温压差膨化干燥过程分为快速干燥、恒速干燥和减速干燥3个阶段,含水率在50%左右时进入恒速干燥阶段,40%后开始减速干燥过程,干燥过程大部分处于降速阶段;不同膨化温度下的...  相似文献   
80.
红枣酒发酵工艺研究   总被引:18,自引:0,他引:18  
 研究了提高红枣发酵酒的质量的主要工艺和参数。结果表明 ,用烘干枣、鲜枣发酵的酒质量相近 ,但红枣过度烘干可抑制正常发酵 ,枣酒质量下降 ;红枣汁采用酶解提取法 ,则还原糖含量比加热提取法的高 ,但用酶解提取的红枣汁经主发酵后酒中甲醇含量增加 ,用酶解和加热相结合的方法提取红枣汁更适于枣酒的发酵 ;用红枣真空浓缩汁发酵较在提取汁中直接添加蔗糖和葡萄糖的发酵效果好 ;葡萄酒酵母菌适于红枣酒的发酵 ,接种量 3%为宜 ;SO2 适宜添加量为 4 0mg·L-1,过多延长主发酵期 ,过少使酒中酸度增加 ,杂菌滋生  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号