A 2-year study was conducted to investigate the effect of three tillage systems on the properties of clay–loam soil (EutricVertisol) planted with winter wheat (Triticum aestivum L.) in the Canakkale province of north-western Turkey. Crop productivity was also evaluated. The three tillage treatments were: (1) conventional tillage involving mouldboard ploughing followed by two discings (MT); (2) shallow tillage consisting of rototilling followed by one discing (RT); (3) double discing (DD). In the first year of the study, bulk density (BD) was found significantly lower under RT at both 0–10 and 10–20 cm depths with 1.24 and 1.32 Mg cm−3, respectively, when compared to MT treatment. However, MT at 20–30 cm provided the highest BD, at 1.49 Mg cm−3. In the second year of the study, DD had the lowest BD at all depths followed by RT and MT. Based on the 2-year mean, aggregate size distribution (ASD) and mean weight diameter (MWD) were significantly influenced by tillage treatments. The greatest MWD was obtained with DD, followed by MT and RT. Increasing MWD and coarse aggregates decreased seedling emergence. Organic carbon increased after RT, DD, and MT by 58%, 30%, and 18%, respectively, when compared to the amount at the beginning of the study. Similarly, the total N in the soil and straw was higher after RT than the other treatments. At 1.76 MPa, penetration resistance at 18–30 cm was significantly higher during the growing period using DD, followed by RT with 1.35 MPa and MT with 1.33 MPa. There was no significant difference between treatments at 0–18 cm. Increasing OC and total N and decreasing BD and PR under RT increased grain yield to 4611 kg ha−1, followed by MT and DD at 4375 and 4163 kg ha−1, respectively, according to the 2-year mean. 相似文献
Fusarium head blight (FHB) is an important disease which has been causing damage to wheat and barley crops in western Canada. Because crop residues are an important source of inoculum, it is important to know the ability of Fusarium spp. to colonize and survive in different residue types, and how their populations might be affected by agronomic practices. Sampling of residue types on producers’ fields for quantification of Fusarium and other fungi was conducted in 2000–2001 in eastern Saskatchewan. Fusarium spp. were isolated from most fields, whereas their mean percentage isolation (MPI) was over 50% for cereal and pulse residues, and under 30% for oilseed residues. The most common Fusarium, F. avenaceum, had a higher MPI in pulse and flax (45–48%) than in cereal or canola (10–22%) residues. This was followed by F. equiseti, F. acuminatum, F. graminearum, F. culmorum and F. poae which were isolated from all, or most, residue types. Factors affecting Fusarium abundance in residues included the current crop, cropping history, and tillage system. In cereal residues, the MPI of F. avenaceum was higher when the current crop was another cereal (24%) versus a noncereal (4–8%). When the current crop was another cereal, the lowest MPI of F. avenaceum and F. culmorum occurred when the field had been in summerfallow (SF) two years previous (F. avenaceum: 17% for SF, 28% for a crop; F. culmorum: 1% for SF, 4% for a crop); in contrast, F. equiseti and Cochliobolus sativus were most common in residues of cereal crops preceded by SF (F. equiseti: 16% for SF, 10% for a crop; C. sativus: 22% for SF, 13% for a crop). The MPI of F. graminearum was higher when the crop two years previous was an oilseed (7%) versus a cereal (4%). In regards to tillage effects, when the current crop was a cereal, the MPI of F. avenaceum was higher under minimum (MT) and zero tillage (ZT) (22–37%) than conventional tillage (CT) (15%), that of F. graminearum was lowest under ZT (3% for ZT, 7–11% for CT-MT), whereas that of C. sativus was highest under CT (27% for CT, 6–11% for MT-ZT). Under ZT, previous glyphosate applications were correlated positively with F. avenaceum and negatively with F. equiseti and C. sativus. These observations generally agreed with results from previous FHB and root rot studies of wheat and barley in the same region. Percentage isolation of F. avenaceum from noncereal and of F. graminearum from cereal residues were positively correlated with FHB severity and percentage Fusarium-damaged kernels of barley and wheat caused by the same fungi. 相似文献
Most of the tillage erosion studies have focused on the effect of tractor-plough tillage on soil translocation and soil loss. Only recently, have a few studies contributed to the understanding of tillage erosion by manual tillage. Furthermore, little is known about the impact of tillage erosion in hilly areas of the humid sub-tropics. This study on tillage erosion by hoeing was conducted on a purple soil (Regosols) of the steep land, in Jianyang County, Sichuan Province, southwestern China (30°24′N and 104°35′E) using the physical tracer method.
The effects of hoeing tillage on soil translocation on hillslopes are quite evident. The tillage transport coefficients were 26–38 kg m−1 per tillage pass and 121–175 kg m−1 per tillage pass respectively for k3- and k4-values. Given that there was a typical downslope parcel length of 15 m and two times of tillage per year in this area, the tillage erosion rates on the 4–43% hillslopes reached 48–151 Mg ha−1 per year. The downslope soil translocation is closely related to slope gradient. Lateral soil translocation by such tillage is also obvious though it is lower than downslope soil translocation. Strong downslope translocation accounts for thin soil layers and the exposure of parent materials/rocks at the ridge tops and on convexities in the hilly areas. Deterioration in soil quality and therefore reduction in plant productivity due to tillage-induced erosion would be evident at the ridge tops and convex shoulders. 相似文献
Soil physical properties affect the establishment of crops; these properties are influenced by cultivation incurred during seedbed preparation and vary greatly depending upon the intensity of applications. However, there is little quantified data concerning the influence of cultivation upon the precise soil structural arrangement and the effects of this on crop establishment. The dynamics of soil macrostructure properties on a range of seedbeds and how they relate to crop establishment are considered in this paper. Significant interactions between cultivation techniques, soil physical properties, the soil macropore structure of the seedbed and the interaction with crop establishment were identified. The relationship between soil structure and crop establishment was highly significant, with increased pore space reducing final establishment numbers. An improvement to a previously developed model (soil quality of establishment (SQE)) was developed following the addition of soil macrostructure properties, accounting for improved predictability of between ca. 6% and 19% of the variation accounted across soil types, environmental conditions. 相似文献