首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5438篇
  免费   234篇
  国内免费   632篇
林业   219篇
农学   579篇
基础科学   178篇
  2157篇
综合类   1835篇
农作物   606篇
水产渔业   86篇
畜牧兽医   348篇
园艺   106篇
植物保护   190篇
  2024年   27篇
  2023年   113篇
  2022年   187篇
  2021年   230篇
  2020年   207篇
  2019年   226篇
  2018年   182篇
  2017年   329篇
  2016年   310篇
  2015年   274篇
  2014年   250篇
  2013年   421篇
  2012年   410篇
  2011年   373篇
  2010年   279篇
  2009年   261篇
  2008年   272篇
  2007年   306篇
  2006年   269篇
  2005年   186篇
  2004年   172篇
  2003年   140篇
  2002年   97篇
  2001年   76篇
  2000年   96篇
  1999年   73篇
  1998年   64篇
  1997年   62篇
  1996年   63篇
  1995年   51篇
  1994年   44篇
  1993年   45篇
  1992年   48篇
  1991年   41篇
  1990年   22篇
  1989年   30篇
  1988年   24篇
  1987年   25篇
  1986年   4篇
  1985年   7篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1977年   3篇
  1962年   1篇
排序方式: 共有6304条查询结果,搜索用时 203 毫秒
21.
Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the influence of trees in agroforestry systems. Also, little information is available on how crop density may be exploited to optimize the yield in such systems. Here we studied the performance of cotton in jujube/cotton agroforestry. Field experiments were conducted in 2012 and 2013 in Hetian, Xinjiang, China. Cotton was grown at a row distance of 60 cm in three densities, 13.5, 18.0 and 22.5 plants m−2 in six m wide paths between tree lines in a jujube plantation. Plant density affected both cotton aboveground dry matter and yield significantly. The highest yield was attained at the intermediate density of 18.0 plants m−2 (20.0 plants m−2 corresponding in sole cotton), lower than the optimal density in sole cotton (25.0 plants m−2). Yield at the lower density was constrained by the low number of bolls per m2 as a direct consequence of the low density, whereas at the high plant density yield was constrained by a lower allocation of assimilates to cotton seed and lint, as a consequence of intraspecific and interspecific competitions. There were strong gradients in yield and yield components in relation to the distance from the tree rows. Leaf area and total dry matter of cotton in rows close to the tree lines were reduced, especially in the rows next to the trees. Moreover, biomass allocation to cotton fruits was reduced in these rows. Competitive influences from the trees on cotton performance extended two rows deep in a six-year old jujube stand, and even three rows deep in a seven-year old stand. Shading effects on cotton yield were compensated by increasing plant density as a result of greater boll numbers per unit ground area. Data from this study help guide the design of optimal plant density of cotton in jujube plantations and give insight in the spatial distribution and dynamics of competitive effects in agroforestry systems in general.  相似文献   
22.
随着探索提高植物整体光合能力相关研究的不断开展,麦类作物穗部器官等植物非叶绿色器官光合潜力挖掘逐渐得到关注。本研究在成都平原秋播美达、贝勒、莫尼卡、摄政王、泰克和甜燕60等6个品种燕麦,设置遮穗、去颖2个试验处理,比较分析了各品种间穗部特征、穗部光合贡献率、颖片光合贡献率和茎光合物质转移率等差异。结果表明,燕麦穗部器官光合贡献率为28.56%~49.05%,其中甜燕60最高;6个品种燕麦的颖片光合贡献率为11.03%~36.88%,茎光合物质转移率为6.65%~35.81%。燕麦穗部器官对籽实增重表现了较高的光合贡献,当燕麦穗部器官光合受到限制时,燕麦单粒种子重和单穗种子数显著降低,尤其是影响双粒小穗数。  相似文献   
23.
Our 1988 paper, describing the effects of cultivation on microbial biomass and activity in different aggregate size classes, brought together the ‘aggregate hierarchy theory’ and the ‘microbial biomass concept’. This enabled us to identify the relationships between microbial and microhabitat (aggregate) properties and organic matter distribution and explain some of their responses to disturbance. By combining biochemical and direct microscopy based quantification of microbial abundance with enzyme activities and process measurements, this study provided evidence for the role of microbial biomass (especially fungi) in macroaggregate dynamics and carbon and nutrient flush following cultivation. In the last ten years environmental genomic techniques have provided much new knowledge on bacterial composition in aggregate size fractions yet detailed information about other microbial groups (e.g. fungi, archaea and protozoa) is lacking.We now know that soil aggregates are dynamic entities – constantly changing with regard to their biological, chemical and physical properties and, in particular, their influences on plant nutrition and health. As a consequence, elucidation of the many mechanisms regulating soil C and nutrient dynamics demands a better understanding of the role of specific members of microbial communities and their metabolic capabilities as well as their location within the soil matrix (e.g. aggregates, pore spaces) and their reciprocal relationship with plant roots. In addition, the impacts of environment and soil type needs to be quantified at the microscale using, wherever possible, non-destructive ‘in situ’ techniques to predict and quantify the impacts of anthropogenic activities on soil microbial diversity and ecosystem level functions.  相似文献   
24.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
25.
本试验旨在分析抗草甘膦玉米和转Bt基因玉米原料及饲粮与同源非转基因玉米原料及饲粮体外总能消化率以及酶水解物能值,为转基因玉米的营养实质等同性仿生评定方法的研究提供参考。试验采用单因素完全随机设计,使用单胃动物仿生消化系统模拟饲料原料和饲粮在鸡胃肠道的消化过程,分析同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应的3种玉米-豆粕饲粮在不同体外模拟消化阶段的干物质消化率、总能消化率和酶水解物能值的差异。结果表明:同源非转基因玉米、抗草甘膦玉米和转Bt基因玉米以及对应饲粮在常规概率成分含量上是相似的。抗草甘膦玉米及饲粮与同源非转基因玉米及饲粮相比,在干物质和能量胃消化率、全消化道消化率及酶水解物能值上均没有显著差异(P0.05)。转Bt基因玉米全消化道总能消化率低于同源非转基因玉米(P=0.03,变异系数=0.50%),对应玉米饲粮的酶水解物能值则高于同源非转基因玉米饲粮(P=0.02,变异系数=1.12%),但均处于仿生消化系统测试的误差范围内(变异系数≤1.64%)。由此可见,抗草甘膦玉米的酶水解物能值与同源对照玉米没有差异,而转Bt基因玉米存在统计学意义上的差异,但所有的测值均处于仿生消化系统的测试误差之内。仿生法发现的差异是否具有生物学意义有待体内试验验证。仿生法可为转基因饲料营养等同性研究提供一种新方法。  相似文献   
26.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   
27.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   
28.
Low selenium (Se) in soil and forage can adversely affect on the quality of animal-derived foods, and hence on human health. Lambs grazed on mixed pastures of alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea) were supplemented with five levels of Se [0, 3, 6, 9 and 12 µg/kg body weight (BW)]. The intake of dry matter (DM) and organic matter (OM) varied with the level of Se supplementation, with a peak at 6 µg Se per kg BW (p ≤ 0.05). Gross energy (GE) intake, digestive energy (DE) intake and metabolic energy (ME) intake were higher at 6 µg Se per kg BW than at other Se levels (p < 0.01); in addition, methane energy (CH4-E) output was lower at 6 µg Se per kg BW. Supplementation with Se significantly increased nitrogen (N) intake, faecal N and urine N, for which the peak values were 20.2 g N/, 5.62 g N/day and 7.92 g N/day, respectively, at 6 µg Se per kg BW. Se intake, blood Se, faecal Se, urine Se and retained Se were negatively correlated with forage crude protein (CP) content (p < 0.001) but were positively correlated with the content of neutral detergent fibre (NDF) (p < 0.001) and acid detergent fibre (ADF) (p < 0.001). Thus, we recommend the addition of 6 µg Se per kg BW to sheep grazed on pastures in regions with low soil Se.  相似文献   
29.
高产棉花太阳辐射能利用率及干物质分配规律研究   总被引:6,自引:0,他引:6  
通过对1988~1989年高产棉花栽培试验结果进行分析发现,棉花的太阳辐射利用率在叶面积系数小于2.0时随叶面积系数的增加而线性增加,大于2.0时增加变缓。从生育时间看,7月中旬前太阳辐射利用率指数上升,7月中旬至8月底相对稳定在1.2~1.4克/兆焦左右,9月以后又不同程度线性下降。生长季内子棉太阳辐射经济效率1988和1989年分别为0.14和0.15克/兆焦。收获指数与最大叶面积系数呈显著负相关;盛花期之前棉株各器官之间的同伸关系或明显,盛花期后器官的生长相互间无明显的确定性关系。如能调节密度与叶面积系数的关系,使得既提高5~6月的辐射能利用率,同时使7~8月叶面积系数维持在3.0~3.5的适宜范围内,9~10月群体又不早衰,则有利于获得高产。  相似文献   
30.
Soil aggregate (SA) can be formed and stabilized when soil organic matter (SOM) is decomposed in the soil. However, the relationships between the SA dynamics and SOM with different decomposition rates have not been clarified. Therefore, this study examined the effects of the addition of polysaccharides to soil on SA formation and stability. A Japanese tropical soil was incubated for 99 d at 30 °C in a dark environment following the addition of 0.5% (w/w) starch or cellulose. The decomposition rates of the amendments, and SA formation and stability were evaluated by measuring soil respiration rates, and distribution fractions of soil aggregate sizes and mean weight diameter (MWD) of SA, respectively. The cumulative soil respirations with all treatments rapidly increased until Day 12 of the incubation. The initial slope of the cumulative soil respiration in the soil with starch was significantly higher than that in the soil with cellulose. In either soil with starch or cellulose, the fractions of macro-aggregates (>1000 μm in diameter) significantly increased, respectively, compared with control soil. However, the fractions of meso-aggregates (250–1000 μm) and nano-aggregate (<20 μm) in the soil with starch significantly decreased, while those fractions in the soil with cellulose fluctuated until Day 6. The MWDs reached the maximum on Day 6, indicating the SA formation in the soils with starch or cellulose. The increasing rate of the SA formation in the starch-amended soil was greatly higher than that in the cellulose-amended soil. After Day 6, the MWDs in the soils with either polysaccharide decreased with similar trends with no significant differences between treatments, indicating similar stability of the SA in both treatments. This study showed that the different decomposability of the organic amendments might influence the SA formation differently, but not the SA stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号