首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8888篇
  免费   401篇
  国内免费   1173篇
林业   437篇
农学   1043篇
基础科学   162篇
  2513篇
综合类   2895篇
农作物   1176篇
水产渔业   577篇
畜牧兽医   1203篇
园艺   353篇
植物保护   103篇
  2024年   59篇
  2023年   138篇
  2022年   197篇
  2021年   277篇
  2020年   246篇
  2019年   330篇
  2018年   234篇
  2017年   319篇
  2016年   448篇
  2015年   379篇
  2014年   434篇
  2013年   770篇
  2012年   654篇
  2011年   660篇
  2010年   542篇
  2009年   575篇
  2008年   571篇
  2007年   601篇
  2006年   506篇
  2005年   410篇
  2004年   320篇
  2003年   244篇
  2002年   181篇
  2001年   151篇
  2000年   160篇
  1999年   144篇
  1998年   139篇
  1997年   107篇
  1996年   115篇
  1995年   82篇
  1994年   84篇
  1993年   67篇
  1992年   55篇
  1991年   50篇
  1990年   49篇
  1989年   53篇
  1988年   33篇
  1987年   38篇
  1986年   15篇
  1985年   9篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   3篇
  1974年   2篇
  1963年   5篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium (68GeO2) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 88Ge to proteins is not due to the simple adsorption by proteins.  相似文献   
32.
Sunflower broomrape (Orobanche cumana Wallr.) is a parasitic plant that infects sunflower (Helianthus annuus L.) plants. In this work, sunflower plants were grown under greenhouse conditions in pots with the substrate infested or non-infested with broomrape seeds. At different numbers of days after sowing, plant height, internode lengths, number of leaves, head diameter, mineral composition of leaves, and potassium (K) concentration in stem were measured. The negative effects of broomrape parasitism were assessed from 57 d after sowing, when broomrape started to emerge. Parasitized plants exhibited lower shoot dry weight, height, and head diameter than control plants. The reduction in internode lengths was associated with a decrease in the gradient of K concentration from basal to apical stem. The mineral composition of leaves was also affected in parasitized plants. The concentrations of calcium (Ca), magnesium (Mg), manganese (Mn), and zinc (Zn) in leaves of parasitized plants were lower than those of the control plants, while there were few differences for K, phosphorus (P), iron (Fe), and copper (Cu). The effects of parasitism are discussed in relation to their competition for resources and to perturbations of the host physiology such as hormonal and water balance.  相似文献   
33.
Anthropogenic conversion of primary forest to pasture for cattle production is still frequent in the Amazon Basin. Practices adopted by ranchers to restore productivity to degraded pasture have the potential to alter soil N availability and N gas losses from soils. We examined short-term (35 days) effects of tillage prior to pasture re-establishment on soil N availability, CO2, NO and N2O fluxes and microbial biomass C and N under degraded pasture at Nova Vida ranch, Rondônia, Brazilian Amazon. We collected soil samples and measured gas fluxes in tilled and control (non tilled pasture) 12 times at equally spaced intervals during October 2001 to quantify the effect of tillage. Maximum soil NH4+ and NO3 pools were 13.2 and 6.3 kg N ha−1 respectively after tillage compared to 0.24 and 6.3 kg N ha−1 in the control. Carbon dioxide flux ranged from 118 to 181 mg C–CO2 m2 h−1 in the control (non-tilled) and from 110 to 235 mg C–CO2 m2 h−1 when tilled. Microbial biomass C varied from 365 to 461 μg g−1 in the control and from 248 to 535 μg g−1 when tilled. The values for N2O fluxes ranged from 1.22 to 96.9 μg N m−2 h−1 in the tilled plots with a maximum 3 days after the second tilling. Variability in NO flux in the control and when tilled was consistent with previous measures of NO emissions from pasture at Nova Vida. When tilled, the NO/N2O ratio remained <1 after the first tilling suggesting that denitrification dominated N cycling. The effects of tilling on microbial parameters were less clear, except for a decrease in qCO2 and an increase in microbial biomass C/N immediately after tilling. Our results suggest that restoration of degraded pastures with tillage will lead to less C matter, at least initially. Further long-term research is needed.  相似文献   
34.
Nitrous oxide (N2O) contributes to greenhouse effect; however, little information on the consequences of different moisture levels on N2O/(N2O+N2) ratio is available. The aim of this work was to analyze the influence of different soil moisture values and thus of redox conditions on absolute and relative emissions of N2O and N2 at intact soil cores from a Vertic Argiudoll. For this reason, the effect of water-filled porosity space (WFPS) values of soil cores of 40, 80,100, and 120% (the last one with a 2-cm surface water layer) was investigated. The greatest N2O emission occurred at 80% WFPS treatment where conditions were not reductive enough to allow the complete reduction to N2. The N2O/(N2O+N2) ratio was lowest (0–0.051) under 120% WFPS and increased with decreasing soil moisture content. N2O/(N2O+N2) ratio values significantly correlated with soil Eh; redox conditions seemed to control the proportion of N gases emitted as N2O. N2O emissions did not correlate satisfactorily with N2O/(N2O+N2) ratio values, whereas they were significantly explained by the amount of total N2O+N2 emissions.  相似文献   
35.
Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–fallow (W–F), spring wheat–lentil (Lens culinaris Medic.) (W–L), spring wheat–spring wheat–fallow (W–W–F), and spring wheat–pea (Pisum sativum L.)–fallow (W–P–F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45–50% higher in CW and W–F than in W–L. The SOC and PCM were not influenced by treatments. The MBC at 0–5 cm was 26% higher in W–W–F than in W–F. The STN and NO3-N at 5–20 cm and PNM at 0–5 cm were 17–1206% higher in CT with W–L than in other treatments. Similarly, MBN at 0–5 cm was higher in CT with W–L than in other treatments, except in CT with W–F and W–P–F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.  相似文献   
36.
To enable the estimation of production and consumption rates of free glycine in soils through 15N isotope dilution experiments, an isotope dilution mass spectrometric method was developed. The method, which enabled high precision N isotope ratio determination of glycine in soil extracts at δ15N levels up to 4000‰ and concentrations from approximately 2 μM, is based on the following steps: (i) addition of glycine spike to the soil extract, (ii) removal of humic substances and pre-concentration of glycine using solid phase extraction, (iii) derivatization of amino acids, (iv) separation of the derivatives using gas chromatography (GC), (v) their combustion to yield sample N2 gas, and (vi) finally the use of N isotope ratio mass spectrometry (IRMS). Judging by uncertainty budget calculations, the precision obtained (SD=0.01-0.06 at% 15N) is sufficient for detecting differences in N isotopic ratios obtained in 15N isotope dilution experiments.  相似文献   
37.
In the Oxisols of the eastern plains of Colombia, the large native anecic earthworm Martiodrilus sp. is an abundant ecosystem engineer producing long-lasting casts and burrows. Casts deposited in the soil by this species have been estimated at several tonnes per hectare per year. The physical and chemical processes occurring in these casts have never been studied. In this study, we compared the dynamics of water content (WC), total C (Ctot), and available N (Navail) contents, and the distribution in size of aggregates in ageing below-ground casts of this species and in the bulk soil. In a native herbaceous savannah and a sown grass/legume pasture (Brachiaria humidicola, Arachis pintoi, Desmodium ovalifolium and Stylosanthes capitata), fresh surface casts were experimentally injected into artificial burrows of 1 cm Ø and 10 cm depth and sampled at different dates during a total period of 120 days. The injection procedure used resulted in a 34% decrease in WC of the casts from the sown pasture and reduced the mean mass diameter (MMD) of the aggregates of casts from the savannah by 19%. Other properties were not significantly affected by the procedure.For injected casts in both grasslands, MMD and Ctot were stable during cast ageing while WC and Navail were initially at levels several times higher than the bulk soil and decreased to similar bulk soil values with ageing. The Ctot was twice and one third higher in casts compared with the bulk soil in the pasture and the savannah, respectively. Overall means for cast MMD (8.3 and 7.4 mm) were twice as high as those in the bulk soil (3.8 mm) in the savannah and the pasture, respectively. However, MMD was not significantly different between the casts and the bulk soil in two occasions in the pasture. Available nitrogen (Navail) in injected casts was initially greater than bulk soil levels, reaching maximum levels just after injection (116 and 93 mg kg−1) and remained significantly greater during 1-2 weeks, in the savannah and the pasture, respectively. In conclusion, the tonnes of casts deposited in the soil profile by Martiodrilus sp. each year are likely to contribute greatly to plant nutrition and to the regulation of the soil structure. For each anecic earthworm species, the ecological impact of its below-ground casts is likely to be as important as its surface casts.  相似文献   
38.
In order to understand the efficiency of residue-N use and to estimate the minimum input required to obtain a reasonable level of crop response, it is important to quantify the fate of the applied organic-N. The recovery of N from 15N-labelled Crotalaria juncea was followed in the soil and the succeeding maize crop. Apparent N recovery (ANR) by maize from unlabelled Crotalaria juncea, Crotalaria retusa, Calopogonium mucunoides, Mucuna pruriens and mineral fertilizer at three locations were also evaluated. The maize crop recovered 4.7% and 7.3% of the 15N-labelled C. juncea-N at 42 days after sowing (DAS) and at final harvest, respectively. The corresponding 15N recovery from the soil was 92.4% and 58.5%. The highest mean ANR of 57.4% was with mineral fertilizer, whereas the mean ANR of 14.3% from C. retusa was the lowest. A large pool substitution and added-N interaction effect was observed when comparing N recovery from the labelled and unlabelled C. juncea. The amount of residue-N accounted for by the isotope dilution method at 42 DAS was 97.1% and at final harvest 65.8%. The large residue-N recovery in the soil organic-N pool explains the residual effect usually observed with organic residue application.  相似文献   
39.
The influence of two experimental soil treatments, Z93 and W91, on nitrogen transformations, microbial activity and plant growth was investigated in soil microcosms. These compounds are commercially marketed fermentation products (Agspectrum) that are sold to be added to field soils in small amounts to promote nitrogen and other nutrient uptake by crops in USA. In laboratory microcosm experiments, soils were amended with finely ground alfalfa-leaves or wheat straw, or left unamended, in an attempt to alter patterns of soil nitrogen mineralization and immobilization. Soils were treated in the microcosms with Z93 and W91 at rates equivalent to the recommended field application rates, that range from 0.2 to 1.1 l ha−1, (0.005-0.03 μl g−1 soil). We measured their effects on soil microbial activity (substrate-induced respiration (SIR), dehydrogenase activity (DHA) and acid phosphatase activity (PHOS)), soil nitrogen pools (microbial biomass N, mineral N, dissolved organic N), and transformations (net N mineralization and nitrification, 15N dilution of the mineral N pool, and accumulation of mineral N on ion-exchange resins), and on wheat plant germination and growth (shoot and root biomass, shoot length, N uptake and 15N enrichment of shoot tissues), for up to 56 days after treatment. To follow the movement of nitrogen from inorganic fertilizer into plant biomass we used a 15N isotopic tracer. Most of the soil and plant responses to treatment with Z93 or W91 differed according to the type of organic amendment that was used. Soil treatment with either Z93 or W91 influenced phosphatase activity strongly but did not have much effect on SIR or DHA. Both chemicals altered the rates of decomposition and mineralization of organic materials in the soil, which was evidenced by significant increases in the rates of the decomposition of buried wheat straw, and by the acceleration of net, rates of N mineralization, relative to those of the controls. Soil nitrate availability increased at the end of the experiment in response to both chemical treatments. In alfalfa-amended soils, the final plant biomass was decreased significantly by treatment with W91. Increased plant growth and N-use efficiency in straw-amended soil, resulting from treatments with Z93 or W91, was linked to increased rates of N mineralization from indigenous soil organic materials. This supports the marketing of these compounds as promoters of N uptake at these low dosage inputs.  相似文献   
40.
A 28 d N transformation test was developed according to the OECD guideline 216. In the laboratory-based test, a suitable soil was amended with powdered plant meal as an organic N source. Soil samples of 1 kg treated with five concentrations of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine), in the range 1.0-100 mg kg−1 dry weight were incubated for 28 d at 20±2 °C. A dose response was produced and the N mineralisation EC50 (95% C.I.) for nitrapyrin was 3.1 (1.9-4.3) mg kg−1 dry soil. The determined EC50 was compared with literature figures for similar end points but using different methodology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号