首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   33篇
  国内免费   101篇
林业   30篇
农学   85篇
基础科学   41篇
  360篇
综合类   316篇
农作物   71篇
水产渔业   26篇
畜牧兽医   27篇
园艺   101篇
植物保护   10篇
  2024年   2篇
  2023年   11篇
  2022年   6篇
  2021年   12篇
  2020年   10篇
  2019年   13篇
  2018年   12篇
  2017年   17篇
  2016年   21篇
  2015年   23篇
  2014年   26篇
  2013年   73篇
  2012年   54篇
  2011年   78篇
  2010年   65篇
  2009年   90篇
  2008年   75篇
  2007年   64篇
  2006年   83篇
  2005年   70篇
  2004年   49篇
  2003年   43篇
  2002年   24篇
  2001年   10篇
  2000年   13篇
  1999年   6篇
  1998年   14篇
  1997年   11篇
  1996年   21篇
  1995年   12篇
  1994年   12篇
  1993年   5篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
排序方式: 共有1067条查询结果,搜索用时 15 毫秒
11.
Nitrogen use efficiency (NUE) definitions, commonly used in literature, are evaluated in response to nitrate availability in four citrus rootstocks, Rough Lemon (Citrus jambhiri Lush) (RL), Sweet Orange (Citrus sinensis (L.) Osbeck) (SwO), Cleopatra Mandarin (Citrus reshni Hort ex Tan.) (CM) and Sour Orange (Citrus aurantium L.) (SO). The application of diverse definitions determine different characterizations in N-efficiency among rootstocks. Nitrogen utilization efficiency (NUtE) and nitrogen efficiency ratio (NER) determine equal level of nitrogen efficiency among all rootstocks. Total nitrogen accumulation (TNA), nitrogen uptake efficiency (NUpE), shoot dry weight (SDW) and total leaf area (TLA) response curves produce the same NUE characterization: SO and SwO were nitrate use efficient and inefficient rootstocks, respectively, while the RL and CM exhibit superior and inferior genetic potential, respectively.  相似文献   
12.
《Soil biology & biochemistry》2011,43(6):1285-1291
Two common plant species of temperate wet grasslands, Carex acuta and Glyceria maxima, were tested for their preferences in the uptake of different nitrogen (N) sources (amino acid, ammonium, nitrate) and their ability to compete for these sources with soil microorganisms. The experiment was a one-day incubation study with plants growing in soil obtained from the field, which was supplied with a solution containing the three N sources, one at a time labeled with 15N. The bulk of the N demand of both species was covered by nitrate-N, which was the dominant N form in the soil at the time of the experiment. Ammonium-N was taken up less strongly, and organic N formed only a negligible part of their nutrition. The assimilated inorganic N was preferentially transported to apical meristem of the youngest leaf, while organic N remained mostly in the roots. The fast-growing Glyceria took up more N and was a better competitor vis-à-vis soil microbes for rarer N forms than Carex. However, both plants were poor competitors for N vis-à-vis soil microbes, irrespective of the N form. Microbes took up nitrate ca. five times faster and organic N more than a hundred times faster than plants. Correspondingly, the calculated turnover time of microbial N was 17 days, compared to 40 days for N in plant roots. A significant amount of added 15N was found at non-exchangeable sites in the soil, which points to the importance of microbial N transformation and abiotic N fixation for N retention in soil. In summary, the preferential assimilation of inorganic N by the wetland plants studied here and their poor ability to compete for N with soil microbes over the short term agree with the results of studies carried out with other species from temperate grasslands.  相似文献   
13.
为了探明圆叶决明(Chamaecrista rotundifolia)降解后红壤可溶性氮及氮水解酶活性的变化规律,本研究采用室内好气恒湿培养法,研究占红壤质量0.5%(T1),1%(T2)和2%(T3)的圆叶决明添加至红壤中,培养7~88d内红壤硝态氮(NO-3-N)、铵态氮(NH+4-N)和可溶性有机氮(Soluble organic nitrogen,SON)及脲酶、蛋白酶和天冬酰胺酶的变化。结果表明:添加圆叶决明后,红壤NO-3-N和NH+4-N含量在培养前期降低,培养中期增加;而整个培养期SON含量及脲酶、蛋白酶和天冬酰胺酶活性均增加,且圆叶决明添加量越大,效果越显著。NO-3-N和SON含量及脲酶、蛋白酶和天冬酰胺酶活性可用2次或3次函数方程拟合;而NH+4-N含量可用线性函数拟合。氮水解酶与NO-3-N负相关,与NH+4-N和SON正相关,且相关性从大到小的顺序为蛋白酶>天冬酰胺酶>脲酶。综上,添加圆叶决明提高了红壤供氮水平和红壤氮转化能力。  相似文献   
14.
We investigated the initial effects of strip wise soil loosening (0–35 cm depth) on soil chemical and physical parameters by using a deeply working rotary cultivator in combination with liming and mixing of the dolomite with the soil material of acidic forests. The investigations took place 8 months after the treatment. pH values and contents of exchangeable Ca and Mg increased significantly at the tilled depth whereas the content of exchangeable Al and easily soluble P decreased. The rate of mineralisation increased at this depth which was shown by a loss of Corg, Ntot and short-term loss of NO3-N. The treatment led to a mobilisation of Mn at the tilled depth. However, the content of exchangeable Pb decreased due to an increased pH value. Below the tillage depth of 35 cm only partly significant changes of exchangeable Mn and NO3-N were found. The total porosity and bulk density at 10–15 and 40–45 cm depths were not significantly different from those in the control plot, but the rate of infiltration increased significantly.  相似文献   
15.
Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of different positions was observed,and the correlations between leaf NRA, leaf area and lamina mass per unit area (LMA) were also examined. The results showed that NRA in the leaf was significantly highest, compared with that in other organs such as roots, stems and leaves. In this experiment, the 10 leaves were selected from the apex to the base of the seedlings in order. The different NRA occurred obviously in leaves of different positions of C. acuminata seedlings from the apex to the base, and NRA was higher in the 4th-6th leaves.The diurnal change rhythm of leaf NRA showed a one peak curve, and maximum NRA value appeared at about midday (at 12:30 or so). No obvious correlations between NRA and leaf area or lamina mass per unit area were observed. This study offered scientific foundation for the further research on nitrogen metabolism of C. acuminata.  相似文献   
16.
Murray Cod, Maccullochella peelii peelii (Mitchell), and Green Oak lettuce, Lactuca sativa, were used to test for differences between three hydroponic subsystems, Gravel Bed, Floating Raft and Nutrient Film Technique (NFT), in a freshwater Aquaponic test system, where plant nutrients were supplied from fish wastes while plants stripped nutrients from the waste water before it was returned to the fish. The Murray Cod had FCR's and biomass gains that were statistically identical in all systems. Lettuce yields were good, and in terms of biomass gain and yield, followed the relationship Gravel bed > Floating > NFT, with significant differences seen between all treatments. The NFT treatment was significantly less efficient than the other two treatments in terms of nitrate removal (20% less efficient), whilst no significant difference was seen between any test treatments in terms of phosphate removal. In terms of dissolved oxygen, water replacement and conductivity, no significant differences were observed between any test treatments. Overall, results suggest that NFT hydroponic sub-systems are less efficient at both removing nutrients from fish culture water and producing plant biomass or yield than Gravel bed or Floating hydroponic sub-systems in an Aquaponic context. Aquaponic system designers need to take these differences into account when designing hydroponic components within aquaponic systems.  相似文献   
17.
杨菲  陆巍 《麦类作物学报》2014,34(10):1413-1419
为探讨硫化氢(H2S)作为潜在的新型氮肥增效剂的可能性,通过水培实验,以扬麦16为材料,以NaHS为H2S供体(浓度0.01mmol·L-1),研究了外源低浓度H2S对低氮(2.5 mmol·L-1)、中氮(7.5)和高氮(15 mmol·L-1)条件下小麦幼苗光合作用、硝态氮吸收和同化的影响.结果表明,外源低浓度H2S促进了小麦幼苗的光合作用及对硝态氮的吸收,使低氮条件下植株干物质重增加15.5%,显著提高叶片可溶性蛋白、总氮及叶绿素含量.外源H2S处理后,低氮和中氮水平下叶片硝酸还原酶(NR)、谷氨酰胺合成酶(GS)以及谷氨酸脱氢酶(GDH)活性有所增加,尤其是在低氮水平下增加显著,但在高氮水平下NR与GS活性分别下降22%和13%,GDH活性与对照无明显差异.以上结果说明外源低浓度H2S可提高小麦幼苗对低氮的适应性,促进其生长及对氮素吸收与同化.  相似文献   
18.
施氮水平及施氮方式对稻田土壤渗漏水三氮浓度影响   总被引:1,自引:0,他引:1  
针对当前氮素不合理使用造成地下水严重污染等一系列事件,明确稻田施肥水平及施肥方式对稻田氮素随渗漏水下渗流失的影响,探求当季氮素流失情况具有积极意义。采用自制盆栽模拟大田土壤渗漏情况,收集渗漏水并分析稻田养分流失量。结果表明:表施肥可以减少9.87%的铵态氮渗漏损失,混施肥可以减少5.92%的铵态氮渗漏损失,但是表施肥又增加了铵态氮的气态损失,且随着施氮水平的提高损失程度加深,渗漏水中硝态氮浓度大于铵态氮浓度,渗漏水中总氮的浓度受施肥方式影响较大。混施肥使得深施和表施的缺点得以避免,是一种合理的施肥方式,在田间作业时可将肥料机械性的搅拌到土壤当中,增加土壤地力。  相似文献   
19.
针对呼和浩特地区生活饮用水,运用风险评估的方法,从危害识别、危害描述、暴露评估、风险描述4个方面对饮用水中硝酸盐危害因子进行科学的评估,确定其风险商(HQ)为34.4%。同时,开展了硝酸盐危害因子亚急性毒理学试验,结果显示:基于膳食暴露低水平喂药的试验组,碱性磷酸酶(ALKP)、乳酸脱氢酶(LDH)、天门冬氨酸氨基转移酶(AST)、尿素(UREA)高于对照组,差异极其显著(P<0.01);基于膳食暴露高水平喂药的试验组,球蛋白(GLOB)、乳酸脱氢酶(LDH)、天门冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、血磷(P)、尿素(UREA)高于对照组,差异极其显著(P<0.01)。  相似文献   
20.
Chlorate resistance is one of the reliable characters in Indica/Japonica classification. To understand the genetic basis of chlorate resistance is very important for revealing the evolutionary mechanism of Indica/Japonica differentiation. In this study, a doubled haploid (DH) population derived from anther culture of ZYQ8/JX17, a typical Indica and Japonica hybrid, was used as the genetic material to investigate chlorate sensitivity of the parents and DH lines. The quantitative trait loci (QTLs) of chlorate resistance were analyzed based on the molecular linkage map of this population. Total of 3 QTLs (qCHR-2, qCHR-8 and qCHR-10) for chlorate resistance were detected on chromosomes 2, 8 and 10, respectively. A QTL × QTL epistatic interaction was detected between qCHR-2 and qCHR-10. Genes involved in nitrogen assimilation, such as nitrate reduction, molybdenum cofactor biosynthesis and nitrate transport were strong candidates of QTLs for chlorate resistance. A putative nitrate reductase gene (8611.t00011), and two putative nitrate reductase genes (9319.t00010 and 9319.t00012) were in the genomic region of qCHR-2, and qCHR-8, respectively, and a putative nitrate transporter gene (756.t00011) was in the region of qCHR-10. The expression of 8611.t00011, 9319.t00010 and 756.t00011 were confirmed by the corresponding cDNAs, and 2 in/del and 12 SNPs in the coding regions of these three genes were found between Indica (cv. 9311) and Japonica (cv. Nipponbare) in silico. These results indicated that these three genes were candidates of the chlorate resistance QTLs. An in/del in the coding region of 8611.t00011 was used to develop a new PCR marker. A polymorphism was detected between JX17/Nipponbare and ZYQ8/9311. This polymorphism corresponds to the chlorate sensitivity of Nipponbare and 9311. This marker was located between Y8007R and RM250 on chromosome 2 in the DH population, where qCHR-2 was also located.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号