首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   121篇
  国内免费   70篇
林业   62篇
农学   42篇
基础科学   1篇
  14篇
综合类   325篇
农作物   59篇
水产渔业   8篇
畜牧兽医   26篇
园艺   14篇
植物保护   807篇
  2024年   9篇
  2023年   45篇
  2022年   30篇
  2021年   37篇
  2020年   63篇
  2019年   54篇
  2018年   36篇
  2017年   50篇
  2016年   49篇
  2015年   43篇
  2014年   53篇
  2013年   55篇
  2012年   66篇
  2011年   70篇
  2010年   62篇
  2009年   58篇
  2008年   51篇
  2007年   60篇
  2006年   54篇
  2005年   42篇
  2004年   49篇
  2003年   28篇
  2002年   34篇
  2001年   39篇
  2000年   35篇
  1999年   31篇
  1998年   29篇
  1997年   28篇
  1996年   27篇
  1995年   22篇
  1994年   5篇
  1993年   9篇
  1992年   11篇
  1991年   7篇
  1990年   10篇
  1989年   6篇
  1988年   1篇
排序方式: 共有1358条查询结果,搜索用时 15 毫秒
31.
BACKGROUND: Application of insecticides in modern agriculture in order to enhance legume production has led to their accumulation in soils to levels that adversely affect soil microflora such as rhizobia and exert a negative impact on the physiological activities associated with them. This study was therefore designed to identify rhizobial strains expressing higher tolerance to insecticides fipronil and pyriproxyfen and synthesising plant growth regulators even amid insecticide stress. RESULTS: The fipronil‐ and pyriproxyfen‐tolerant Rhizobium sp. strain MRL3 produced plant‐growth‐promoting substances in substantial amounts, both in the presence and in the absence of the insecticides. In general, both insecticides at recommended and higher rates reduced plant dry biomass, symbiotic properties, nutrient uptake and seed yield of lentil plants. Interestingly, when applied with any concentration of the two insecticides, Rhizobium sp. strain MRL3 significantly increased the measured parameters compared with plants grown in soils treated solely with the same concentration of each insecticide but without inoculant. CONCLUSION: This study suggests that Rhizobium strain MRL3 may be exploited as a bioinoculant to augment the efficiency of lentil exposed to insecticide‐stressed soils. Copyright © 2010 Society of Chemical Industry  相似文献   
32.
农民接触农药防护措施及对机体影响的研究   总被引:2,自引:0,他引:2  
了解农民接触农药时采用的防护措施及对机体的影响,对合格对象进行流行病学问卷调查及精液检测,发现农民在配、喷农药及检修喷药器械时未能安全合理使用防护措施;受教育程度与接触农药防护态度有关;长期小剂量接触农药对不稳定细胞有损害。建议为减少或避免农药中毒,政府应加强对农民进行农药基本知识、安全合理使用的宣传教育、推广和普及;增强农民遵守安全操作规程的自我保护意识。  相似文献   
33.
The rice stem borer, Chilo suppressalis (Walker), an important insect pest of rice in China, has developed resistances to several classes of insecticides in field. In order to investigate multiple resistance mechanisms, synergistic tests were conducted with the Ruian (RA) population and Lianyungang (LYG) population, two representative populations to different insecticides. Results showed that diethyl maleate (DEM), S,S,S-tributyl phosphorotrithioate (DEF) and piperonyl butoxide (PBO), had no significant synergistic or inhibitory effect on the high level of resistance to monosultap (313.4-fold) and moderate level to chlorpyrifos (36.9-fold) in Ruian field population from the year 2011 (RA11). DEF significantly synergized the activity of triazophos in RA11 population (536.8-fold), with synergism ratio of 1.92. DEF and PBO significantly suppressed 43.3% and 40.4% of resistance to fipronil in RA11 population (48.4-fold), respectively, with the synergistic ratios of 1.76 and 1.69. When pretreated with PBO, the activity of deltamethrin against RA11 population were significantly synergized, with synergism ratio of 9.57, and with reducing resistance levels from 152.5- to 15.9-fold. The results of this study indicated that resistance to several classes of insecticide among the field populations of C. suppressalis might be provided by the combination of the multiple resistance mechanisms. Metabolic resistance mechanism might be the major reason for the evolution for resistance to deltamethrin and fipronil, while resistance to monosultap, triazophos and chlorpyrifos is not associated with metabolic resistance.  相似文献   
34.
不同类型杀虫剂对温室白粉虱若虫的毒力研究   总被引:2,自引:0,他引:2  
利用一龄若虫浸渍法测定了不同类型杀虫剂对温室白粉虱四季青种群的毒力,发现白粉虱对噻嗪酮、阿维菌素极其敏感,对吡虫啉和联苯菊酯次之,而对马拉硫磷和DDVP不敏感。  相似文献   
35.
近年来我国水稻褐飞虱暴发原因及治理对策   总被引:9,自引:0,他引:9  
本文从气象因素、水稻耕作制度因素及化学防治因素等方面分析了我国近年来水稻褐飞虱暴发成灾的原因。褐飞虱迁入足够的虫源基数是大发生的基础,适宜的气候条件是大发生的关键,而化学药剂的防效下降及其技术不到位则是暴发成灾的客观原因。最后,还讨论了褐飞虱的防治策略。  相似文献   
36.
Pyriproxyfen is a biorational insecticide that acts as a juvenile hormone (JH) analogue and disrupts insect development with an unknown molecular mode of action. Pyriproxyfen is one of the major insecticides used to control the whitefly Bemisia tabaci (Gennadius) and comply with integrated pest management (IPM) programmes, resulting in minimal effects on the environment, humans and beneficial organisms. During the last few years, resistance to pyriproxyfen has been observed in several locations in Israel, sometimes reaching a thousandfold or more. No information exists about the molecular basis underlying this resistance that may lead to understanding the mode of action of pyriproxyfen and developing molecular markers for rapid monitoring of resistance outbreaks. In this communication, a cDNA microarray from B. tabaci was used to monitor changes in gene expression in a resistant B. tabaci population. Based on statistical analysis, 111 expressed sequence tags (ESTs) were identified that were differentially upregulated in the resistant strain after pyriproxyfen treatment. Many of the upregulated ESTs observed in the present study belong to families usually associated with resistance and xenobiotic detoxification such as mitochondrial genes, P450s and oxidative stress, genes associated with protein, lipid and carbohydrate metabolism and others related to JH-associated processes in insects such as oocyte and egg development.  相似文献   
37.
Only a few of the registered insecticides against Cydia pomonella L. are still effective in areas where insecticide resistance has emerged in this pest. Resistance mechanisms are multiple, and their lone or cumulative effects in a single population are not completely understood. A detailed estimation of resistance spectrum is still required to define the suitable insecticides to use against a given population. The efficacy of ten insecticides was therefore investigated together with the resistance mechanisms expressed in four laboratory strains and 47 field populations of C. pomonella from five countries. Bioassays were performed using topical applications of diagnostic concentrations on diapausing larvae, and resistance mechanisms were analysed on adults emerging from control insects. All populations exhibited a reduced susceptibility to at least one insecticide when compared with the susceptible laboratory strain. Cross-resistances were observed between azinphos-methyl or phosalone and more recent compounds such as spinosad and thiacloprid. Resistances to azinphos-methyl, diflubenzuron, spinosad, tebufenozide and thiacloprid were significantly correlated with mixed-function oxidase activity, while increased glutathione-S-transferase and reduced non-specific esterase activities were correlated with resistance to azinphos-methyl and emamectin, respectively. Conversely, resistances to azinphos-methyl, tebufenozide and thiacloprid were negatively correlated with increased esterase activity. None of the observed mechanisms explained the loss of susceptibility of populations to chlorpyrifos-ethyl, and no significant correlation was detected between resistance to deltamethrin and the presence of the kdr mutation. The suitability of such non-target instars to monitor insecticide resistance in field populations is discussed.  相似文献   
38.
39.
八种杀虫剂对黑粪蚊的防治效果及残留分析   总被引:1,自引:1,他引:1  
选择8种杀虫剂,分别在实验室和菇房条件下研究其对黑粪蚊的防治效果和对平菇菌丝生长的影响,并分析施药后不同时间平菇中的农药残留.结果表明,40%辛硫磷EC、40%氧乐果EC、48%毒死蜱EC对黑粪蚊具有很好的防治效果,但对平菇菌丝的抑制率明显高于其它药剂;10%吡虫啉WP、4.5%高效氯氰菊酯EC不仅对黑粪蚊成、幼虫具有良好的防治效果,而且使用后对平菇菌丝生长的影响较小;2.5%高效氯氟氰菊酯EW、4.5%高效氯氰菊酯EC、1.8%阿维菌素EC等使用5天后均未检测到农药残留,5%氟虫腈SC和10%吡虫啉WP药后15天仍能检测到残留.  相似文献   
40.
BACKGROUND: A major problem of crop protection in Crete, Greece, is the control of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) with chemical insecticides owing to the rapid development of resistance. The aim of this study was to investigate the establishment of resistance and the underlying mechanisms to major insecticide classes with classical bioassays and known biochemical resistance markers. RESULTS: During a 2005–2007 survey, 53 Q biotype populations were collected. Application history records showed extensive use of neonicotinoids, organophosphates, carbamates and pyrethroids. High resistance levels were identified in the majority of populations (>80%) for imidacloprid (RF: 38–1958×) and α‐cypermethrin (RF: 30–600×). Low resistance levels (RF < 12) were observed for pirimiphos‐methyl. A strong correlation between resistance to imidacloprid and the number of applications with neonicotinoids was observed. Significant correlations were observed between COE and P450‐dependent monoxygenase activity with resistance to α‐cypermethrin and imidacloprid respectively. A propoxur‐based AChE diagnostic test indicated that iAChE was widespread in most populations. Resistance levels for α‐cypermethrin were increased when compared with a previous survey (2002–2003). Differentiation of LC50 values between localities was observed for imidacloprid only. CONCLUSION: Bemisia tabaci resistance evolved differently in each of the three insecticides studied. Imidacloprid resistance seems less established and less persistent than α‐cypermethrin resistance. The low resistance levels for pirimiphos‐methyl suggest absence of cross‐resistance with other organophosphates or carbamates used. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号