首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8807篇
  免费   417篇
  国内免费   860篇
林业   468篇
农学   679篇
基础科学   228篇
  3395篇
综合类   3120篇
农作物   590篇
水产渔业   155篇
畜牧兽医   941篇
园艺   207篇
植物保护   301篇
  2024年   39篇
  2023年   141篇
  2022年   187篇
  2021年   258篇
  2020年   281篇
  2019年   271篇
  2018年   209篇
  2017年   378篇
  2016年   522篇
  2015年   407篇
  2014年   457篇
  2013年   715篇
  2012年   752篇
  2011年   667篇
  2010年   556篇
  2009年   511篇
  2008年   413篇
  2007年   529篇
  2006年   459篇
  2005年   334篇
  2004年   275篇
  2003年   246篇
  2002年   166篇
  2001年   144篇
  2000年   158篇
  1999年   99篇
  1998年   108篇
  1997年   112篇
  1996年   112篇
  1995年   91篇
  1994年   75篇
  1993年   76篇
  1992年   80篇
  1991年   56篇
  1990年   55篇
  1989年   53篇
  1988年   31篇
  1987年   26篇
  1986年   12篇
  1985年   8篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Soil compaction, especially subsoil compaction, in agricultural fields has increased due to widespread use of heavy machines and intensification of vehicular traffic. Subsoil compaction changes the relative distribution of roots between soil layers and may restrict root development to the upper part of the soil profile, limiting water and mineral availability. This study investigated the direct effects of inter-row subsoiling, biological subsoiling and a combination of these two methods on soil penetration resistance, root length density, nitrogen uptake and yield. In field experiments with potatoes in 2013 and 2014, inter-row subsoiling (subsoiler) and biological subsoiling (preceding crops) were studied as two potential methods to reduce soil penetration resistance. Inter-row subsoiling was carried out post planting and the preceding crops were established one year, or in one case two years, prior to planting. Soil resistance was determined with a penetrometer three weeks after the potatoes were planted and root length density was measured after soil core sampling 2 months after emergence. Nitrogen uptake was determined in haulm (at haulm killing) and tubers (at harvest). Inter-row subsoiling had the greatest effect on soil penetration resistance, whereas biological subsoiling showed no effects. Root length density (RDL) in the combined treatment was higher than in the separate inter-row and biological subsoiling treatments and the control, whereas for the separate inter-row and biological subsoiling treatments, RLD was higher than in the control. Nitrogen uptake increased with inter-row subsoiling and was significantly higher than in the biological subsoiling and control treatments. However, in these experiments with a good supply of nutrients and water, no yield differences between any treatments were observed.  相似文献   
42.
Three years of field experiments were carried out to explore the response of potato dry matter production, accumulated intercepted photosynthetic active radiation (Aipar) and radiation use efficiency (RUE) to five N levels providing 0, 60, 100, 140 and 180 kg N ha−1 and three drip irrigation strategies, which were full, deficit and none irrigation. Results showed that, irrespective of years, dry matter production and Aipar were increased by prolonged N fertigation, even though N fertigation was carried out from middle to late growing season. The highest total and tuber dry matter and accumulated radiation interception in all three years were obtained when potatoes were provided with 180 kg N ha−1. RUE on the other hand was not affected by N regime. Thus, increases in total dry matter production with increasing N levels were essentially caused by higher Aipar. The strongest response to N fertilization occurred when most N was applied early in the growing season and the latest N fertilization should be applied no later than 41–50 days after emergence. Deficit irrigation, which received ca.70% of irrigation applied to full irrigation, did not reduce radiation interception and radiation use efficiency.  相似文献   
43.
Excessive application of N fertilizer in pursuit of higher yields is common due to poor soil fertility and low crop productivity. However, this practice causes serious soil depletion and N loss in the traditional wheat cropping system in the Loess Plateau of China. Growing summer legumes as the green manure (GM) crop is a viable solution because of its unique ability to fix atmospheric N2. Actually, little is known about the contribution of GM N to grain and N utilization in the subsequent crop. Therefore, we conducted a four-year field experiment with four winter wheat-based rotations (summer fallow-wheat, Huai bean–wheat, soybean–wheat, and mung bean–wheat) and four nitrogen fertilizer rates applied to wheat (0, 108, 135, and 162 kg N/ha) to investigate the fate of GM nitrogen via decomposition, utilization by wheat, and contribution to grain production and nitrogen economy through GM legumes. Here we showed that GM legumes accumulated 53–76 kg N/ha per year. After decomposing for approximately one year, more than 32 kg N/ha was released from GM legumes. The amount of nitrogen released via GM decomposition that was subsequently utilized by wheat was 7–27 kg N/ha. Incorporation of GM legumes effectively replaced 13–48% (average 31%) of the applied mineral nitrogen fertilizer. Additionally, the GM approach during the fallow period reduced the risk of nitrate-N leaching to depths of 0–100 cm and 100–200 cm by 4.8 and 19.6 kg N/ha, respectively. The soil nitrogen pool was effectively improved by incorporation of GM legumes at the times of wheat sowing. Cultivation of leguminous GM during summer is a better option than bare fallow to maintain the soil nitrogen pool, and decrease the rates required for N fertilization not only in the Loess Plateau of China but also in other similar dryland regions worldwide.  相似文献   
44.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   
45.
2008年4月至2010年6月采用时间序列代替空间序列的方法,对宝天曼栎类森林生态系统服务功能受地表火影响在不同时间的涵养水源、保育土壤、固碳释氧、生物保育、积累营养物质、负离子提供和森林病虫害防治等7个方面进行了初步评估。结果表明,地表火干扰造成宝天曼栎类森林生态系统服务功能损失的价值在时间序列上依次为1年是24.95万元.hm-2,5年是11.68万元.hm-2,10年是4.91万元.hm-2,15年是0.68万元.hm-2;各项服务功能价值量损失排序为保育土壤>涵养水源>病虫害防治>固碳释氧>积累营养物质>净化大气>生物保育,其中保育土壤和涵养水源两项的损失占总损失量的70%左右,这表明地表火主要影响宝天曼栎类森林生态系统中的保育土壤和涵养水源功能。  相似文献   
46.
Under Mediterranean conditions, drought affects cereals production principally through a limitation of grain filling. In this study, the respective role of post‐anthesis photosynthesis and carbon remobilization and the contribution of flag leaf, stem, chaff and awns to grain filling were evaluated under Mediterranean conditions in durum wheat (Triticum turgidum var. durum) cultivars. For the purpose, we examined the effects of shading and excision of different parts of the plant and compared carbon isotope discrimination (Δ) in dry matter of flag leaf, stem, chaff, awns and grain at maturity and in sap of stem, flag leaf, chaff and awns, this last measurement providing information on photosynthesis during a short period preceding sampling. Source–sink manipulations and isotopic imprints of different organs on final isotope composition of the grain confirmed the high contribution of both carbons assimilated by ears and remobilized from stems to grain filling, and the relatively low contribution of leaves to grain filling. Grain Δ was highly and significantly associated with grain yield across treatments, suggesting the utilization of this trait as an indicator of source–sink manipulations effects on grain yield. Chaff and awns Δ were better correlated with grain Δ than stem and leaf Δ, indicating that chaff were more involved in grain filling than other organs. Moreover, in chaff, sap Δ was highly significantly correlated with dry matter Δ. These results suggest the use of Δ for a rapid and non‐destructive estimation of the variation in the contribution of different organs to grain filling.  相似文献   
47.
减少底肥施用量增加叶面施肥次数对玉米产量的影响   总被引:1,自引:0,他引:1  
该试验目的是研究降低底肥施用量但是增加叶面肥施用次数方面对玉米产量的变化规律,旨在找出最经济的施肥方式以达到在保护环境的基础上提高经济效益的目的。试验表明,玉米产量随着底肥施用量的增加而提高,并且叶面肥喷施次数越多产量越高,每喷一次,可增加产量258~592.5 kg/hm2,增产幅度2.3%~5.6%。  相似文献   
48.
旨在维护国家稳定,为预判粮食生产前景、提高粮食生产效率、保障粮食安全提供理论依据。利用湖南省统计数据,运用灰色关联分析法筛选关联性较强的影响因素,并建立GM(1,N)预测模型预测粮食产量。2008—2017年与湖南省粮食产量关联度最大的影响因素是粮食作物播种面积和农业机械总动力;科技因素是影响2008—2017年湖南省粮食产量的主要因素,其次是自然因素,社会因素;2018—2027年湖南省粮食产量有较小波动,且农业机械总动力和财政农业支出影响较大;农业机械总动力在前后十年对粮食产量都有较重要的影响,越来越占据主导地位。粮食产量受国家政策的影响,受农业机械总动力影响最大,维持产量水平需高度重视农业机械化水平,稳步提高粮食作物播种面积。  相似文献   
49.
大豆是我国重要的粮食作物和油料作物,其价格对于国民经济尤其是农业经济的影响意义深远。大豆价格的稳定对于我国大豆市场的健康发展有着重要的现实意义。在灰色理论的基础上,提出了一种改进GM(1,N)大豆价格预测模型,首先运用灰色关联分析法对我国大豆价格的影响因素进行分析,选择主要的影响因素;再将这些影响因素作为模型的相关因素变量,构建GM(1,N)大豆价格预测模型。采用2010-2015年的大豆数据进行实证研究,模型选取国内大豆自给量、世界大豆产量、国民消费价格指数、消费者信心指数4个变量作为相关因素变量;模型预测误差为2.10%,预测精度较高,能够较好地掌握大豆价格的变化规律,可以为大豆价格市场预测及国家宏观政策的制定提供理论指导。  相似文献   
50.
通过对泰兴香荷芋施肥量研究,考查了各处理主要生育期的苗情与长势、成熟期子孙芋产量及商品芋产值效益。结果显示:基施腐熟脱水猪粪15t·hm-2,苗期追施(3.1叶)脱水猪粪15t·hm-2+13-10-18高钾复合肥675kg·hm-2的处理子孙芋产量最高为23 421.90kg·hm-2,商品芋效益为88 506.60元·hm-2;基施有机肥7 500kg·hm-2+苗期追施(3.1叶)有机肥7 500kg·hm-2+13-10-18高钾复合肥450kg·hm-2+膨大肥(8.1叶)13-10-18高钾复合肥900kg·hm-2的处理产量相对较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号