The effects of tillage methods on percent surface residue cover remaining and decomposition rates of crop residues were evaluated in this study. The line transect method was used to measure residue cover percentage on continuous corn (Zea mays L.) plots under no tillage (NT), conventional tillage (CT), chisel plow (CH), and disk tillage (DT). Samples of rye (Secale cereale L.) and hairy vetch (Vicia villosa Roth) were used for residue decomposition study. Results showed that the percentage of residue cover remaining was significantly higher for NT than for CH and DT and that for CT was the lowest (< 10%). For the same tillage system, the percent residue cover remaining was significantly higher in the higher fertilizer N rate treatments relative to the lower fertilizer N treatments. Weight losses of rye and vetch residues followed a similar pattern under CT and DT, and they were significantly faster in CT and DT than in NT system. Also, the amounts of residue N remaining during the first 16 weeks were always higher under NT than under CT and DT. 相似文献
Nitrogen (N) leaching from soil into water is a significant concern for intensively grazed forage‐based systems because it can cause a decline in water quality and is a risk to human health. Urine patches from grazing animals are the main source of this N. The objective of this study was to quantify the effect that forage type and gibberellic acid (GA) application had on N leaching and herbage N uptake from urine patches on perennial ryegrass–white clover (RGWC), Italian ryegrass and lucerne. A lysimeter study was conducted over 17 months to measure herbage growth, N uptake and N loss to water beneath each of the three forage types with the following treatments: control, urine (700 kg N/ha) and urine with GA (8 g GA active ingredient/ha). Compared with RGWC (205 kg N/ha), N leaching losses were 35.3% lower from Italian ryegrass (133 kg N/ha) and 98.5% higher from lucerne (407 kg N/ha). These differences in leaching loss are likely to be due to winter plant growth and N uptake. During the winter months, Italian ryegrass had higher N uptake, whereas lucerne had lower N uptake, compared with RGWC. The application of GA had no effect on N leaching losses, DM yield or N uptake of forage treated with 700 kg N/ha urine. 相似文献
The objectives were i) to assess indicators for potential nitrogen (N) mineralization and ii) to analyze their relationships for predicting winter wheat (Triticum aestivum L.) growth parameters (yield and N uptake, Nup) in Mollisols of the semi-arid and semi-humid region of the Argentine Pampas. Thirty-six farmer fields were sampled at 0–20 cm. Several N mineralization indicators, wheat grain yield and Nup at physiological maturity stage were assessed. A principal component (PC) analysis was performed using correlated factors to grain yield and Nup. The cluster analysis showed two main groups: high fertility and low fertility soils. In high fertility soils, combining PCs in multiple regression models enhanced the wheat yield and Nup prediction significantly with a high R2 (adj R2 = 0.71–0.83). The main factors that explained the wheat parameters were associated with water availability and N mineralization indicator, but they differ according to soil fertility.
Abbreviations: N: nitrogen; SOM: soil organic matter; POM: particulate organic matter; SOC: soil organic carbon; SON: soil organic nitrogen; POM-C: particulate organic carbon; POM-N: particulate organic nitrogen; Nan: anaerobic nitrogen; Nhyd: hydrolyzable N; NO3-N: cold nitrate; N205: N determined by spectrometer at 205 nm; N260: N determined by spectrometer at 260 nm; Pe: extractable P; Nup: wheat N uptake; NO3-N: inorganic N in the form of nitrate; FR: fallow rainfalls (March-Seeding rainfall); FLR: flowering rainfalls (October-December rainfall); GFR: grain filling rainfall (November rainfall); CCR: crop growing season rainfall (June-December rainfall); PCA: principal component analysis; PC: principal component; MR: multiple regression 相似文献