首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   16篇
  国内免费   18篇
林业   137篇
农学   16篇
基础科学   11篇
  275篇
综合类   145篇
农作物   18篇
水产渔业   33篇
畜牧兽医   94篇
园艺   4篇
植物保护   4篇
  2024年   3篇
  2023年   8篇
  2022年   9篇
  2021年   12篇
  2020年   13篇
  2019年   17篇
  2018年   1篇
  2017年   20篇
  2016年   17篇
  2015年   24篇
  2014年   22篇
  2013年   29篇
  2012年   24篇
  2011年   52篇
  2010年   48篇
  2009年   67篇
  2008年   56篇
  2007年   51篇
  2006年   46篇
  2005年   43篇
  2004年   39篇
  2003年   22篇
  2002年   9篇
  2001年   11篇
  2000年   10篇
  1999年   10篇
  1998年   8篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
排序方式: 共有737条查询结果,搜索用时 15 毫秒
91.
Growth and soil N supply in young Eucalyptus tereticornis stands at two sites in Kerala, India, were examined in response to cover cropping with three legume species (Pueraria phaseoloides, Stylosanthes hamata, and Mucuna bracteata). The effects of legume residues on soil N supply were investigated in a long-term (392 day) laboratory incubation using leaching micro-lysimeters. Residues from the eucalypt and legume species had different rates of net N release during the laboratory incubation. Net N release was significantly related to residue N concentration (R2 =0.94), the C:N ratio (R2 =0.91), the lignin:N ratio (R2 =0.83), and the (lignin + soluble polyphenol):N ratio (R2 =0.95). Nitrogen release rates declined in the order Mucuna > Pueraria > Eucalyptus > Stylosanthes. There was no net N release from Stylosanthes residues during the 392-day laboratory incubation, whereas Mucuna and Pueraria released N throughout the incubation period. Net N release from mixtures of legume and eucalypt residues was not additive in the early phase of the incubation, probably because eucalypt residues initially immobilized a portion of the legume-derived N in addition to the soil-derived N. Legume establishment had no significant effect on tree growth at one site (Kayampoovam), but resulted in depressed tree growth at the lower rainfall site (Punnala) at 18 months. There were no significant treatment effects on growth at Punnala after that time. Cover cropping with legumes during the early phase of forest plantation growth may be a useful mechanism to enhance soil N supply and optimize the synchrony between N supply and tree N uptake. Although these effects did not translate into improved plantation growth in the 3 years of this study, improved soil organic matter and N fertility may help ensure sustainable productivity over several rotations in the future. This study showed that the effect of legumes on N dynamics varies markedly with legume species. This, together with other factors (e.g. competition with trees, N fixation capacity), will be important in selecting suitable species for cover cropping in forest plantations.  相似文献   
92.
Temporal variability is a key factor to understand the structure of belowground communities. Seasonal and annual variations are especially relevant in unpredictable desert ecosystems, where macroinvertebrates are poorly known, despite constituting an important group of soil organisms. In the present study, we analyse the composition and temporal (seasonal and annual) variations of soil macroinvertebrates in an arid area of southern Spain. During two years, macroinvertebrates were sampled in litter and belowground levels by means of soil cores. Results show that the assemblage was dominated by arthropods, especially Formicidae and Coleoptera. The assemblage differed between litter and belowground levels. In litter, detritivores dominated the community, while belowground fauna showed a similar proportion of detritivores and herbivores and a low percentage of predators. Litter and belowground assemblages showed seasonal variations in richness, abundance, biomass and composition, although variations were more marked in litter than belowground. Patterns of seasonal variation also differed between the two study years for both litter and belowground invertebrates. The seasonal and annual variability of the assemblage has potentially important implications for community dynamics in the study system, since the changes in species composition and trophic structure of soil invertebrate assemblages may affect species interactions and food web dynamics over time. Therefore, integrating temporal variability is likely to be crucial to understand soil community dynamics and food webs, especially in heterogeneous, variable systems as deserts.  相似文献   
93.
The relative importance of litter quality and site heterogeneity on population dynamics of decomposer food webs was investigated in a semi-natural mixed deciduous forest in Denmark. Litterbags containing beech or ash leaves were placed in four plots. Plots were located within gaps and under closed canopies at two topographically different sites, above and below a slope, respectively, to cover variable environmental conditions. Litter was collected after 2, 4 and 9 months of decomposition. Extensive decay prevented analysis of ash after 9 months. Density of bacteria (CFU), active fungal mycelium (FDA), protozoa (MPN) and nematodes were 4-15-fold higher in ash leaves than in beech leaves in accordance with the higher resource quality of ash. Similar effects of site on density of decomposers were evident in both litter types: with some exceptions, decomposers were higher at the low site and stimulated in gaps. Taxonomic diversity of nematodes increased during decomposition and functional diversity of nematodes followed a pattern often encountered, i.e. opportunistic bacterial-feeders were gradually replaced by fungal-feeders and slower growing bacterial-feeders while predators and omnivors peaked at the end of the study period. At the first sampling, where bacterial activity prevailed, the relative abundance of the two dominant bacterial-feeders, Rhabditidae (fast growing) and Plectus spp. (slower growing), depended more on site than litter type. At the second sampling where fungal activity became more important, the proportions of bacterial and fungal-feeding nematodes also depended more on site than on litter type. At the third sampling individual nematode taxa responded differently to site. In summary, we conclude that although litter quality had a major influence on the density of organisms in the decomposer food web, site effects were also detected and nematode functional groups responded more to site than to litter quality early on in the decomposition process.  相似文献   
94.
华南典型人工林的土壤物理性质及其水源涵养功能   总被引:14,自引:0,他引:14  
对杉木、马尾松、湿地松、尾叶桉和马占相思林的土壤物理性质、凋落物持水量以及土壤贮水性能进行了研究。5种林分土壤的毛管孔隙度、非毛管孔隙度和总孔隙度均为上层大于下层,而土壤容重为上层小于下层。总体来看,5种林分中杉木和马占相思林土壤疏松、孔隙度大;尾叶桉林土壤紧实、孔隙度小,马尾松林和湿地松的土壤孔隙度中等。凋落物最大持水量呈现杉木林(18thm-2)>马占相思林(15thm-2)>尾叶桉林(14thm-2)>马尾松林(11thm-2)>湿地松林(10thm-2)。土壤是森林涵养水源的主体,其最大持水量占林地最大持水量的99%以上,顺序为杉木林地和马占相思林(2064和2061thm-2)>湿地松林(2041thm-2)>马尾松林(2032thm-2)>尾叶桉林(1941thm-2)。林地最大持水量的顺序为杉木林地(2082thm-2)>马占相思林地(2076thm-2)>湿地松林地(2051thm-2)>马尾松林地(2043thm-2)>尾叶桉林地(1955thm-2)。  相似文献   
95.
Urban regions of southern California receive up to 45 kg N ha-1 y-1 from nitrogen (N) deposition. A field decomposition study was done using 15N-labelled litter of the widespread exotic annual grass Bromus diandrus to determine whether elevated soil N is strictly from N deposition or whether N mineralization rates from litter are also increased under N deposition. Tissue N and lignin concentrations, which are inversely related in field sites with high and low N deposition, determine the rate at which N moves from plant litter to soil and becomes available to plants. The effect of soil N on N movement from litter to soil was tested by placing litter on high and low N soil in a factorial experiment with two levels of litter N and two levels of soil N. The litter quality changes associated with N deposition resulted in faster rates of N cycling from litter to soil. Concentrations of litter-derived N in total N, NH4+, NO3, microbial N and organic N were all higher from high N/low lignin litter than from low N/high lignin litter. Litter contributed more N to soil NH4+ and microbial N in high N than low N soil. At the end of the study, N mineralized from high N litter on high N soil accounted for 46% of soil NH4+ and 11% of soil NO3, compared to 35% of soil NH4+ and 6% of soil NO3 from low N litter on low N soil. The study showed that in high N deposition areas, elevated inorganic soil N concentrations at the end of the summer N deposition season are a result of N mineralized from plant litter as well as from N deposition.  相似文献   
96.
In the litter of six deciduous tree species (Fagus sylvatica, Tilia spp., Fraxinus excelsior, Carpinus betulus, Acer pseudoplatanus and Acer platanoides) and in stand-specific litter mixtures, we compared mass loss and nutrient release across diversity levels along a gradient of decreasing proportion of Fagus in stands with similar environmental and physical soil conditions. The litterbag studies ran over 22 months. The decomposition rate constants (k) of the temperate forest species ranged from k = 0.5 for Fagus to k = 1.5-2 for all other tree species. In Fagus, k was closely negatively correlated with the thickness of the litter layer and positively correlated with soil pH and isopod abundance. k was significantly higher in the mixed species stands (except for Carpinus and Fraxinus) and was positively correlated with earthworm abundance. Over the whole incubation time, nutrient amount and release rates of N, P, K, Ca and Mg as well as C-related ratios showed significant differences between tree species but no consistent differences among the diversity levels. Initial C-related nutrient ratios of the leaf litter and abundance of mesofauna and macrofauna were correlated with the length of time lag before nutrient release. We conclude that the mere number of tree species is not the main driver of nutrient release and decomposition processes, but that key groups of the decomposer fauna as well as the characteristic traits of the individual tree species are decisive.  相似文献   
97.
We examined the quality and decomposition of naturally abscised leaves of silver birch (Betula pendula) seedlings subjected to three different levels of fertilization under ambient and elevated levels of temperature and CO2. At the end of the second growing season, the chemical composition of the litter collected from the seedlings was analyzed. Whole-leaf samples from pooled litter from each of the four replicates from each treatment were put in mesh bags and transferred to ambient climate in the field. The remaining mass of litter was measured by sampling bags in May and October throughout the four-year incubation period. Fertilization with all nutrients decreased the initial carbon and tannin contents of litter, and increased the proportion of the fast-decomposing fraction, but still fertilization slowed down the decomposition of this fraction. Initially, the estimated proportion of the fast-decomposing fraction was smallest in elevated CO2 + temperature, and largest in ambient climate. During decomposition, elevated growth-temperature slowed down decomposition of the fast fraction under ambient CO2 but increased it under elevated CO2. The changes in litter decomposition rates found over four years were not very large. However, we conclude that the interactions of different factors lead to different results than if the factors had been studied separately, and future studies should take interactions into account.  相似文献   
98.
枯枝落叶积累可改变原生态环境,地表温度、土壤PH值积累量呈线性负相关,蒸发量、土壤容重与积累量呈指数负相关,土壤水分、土壤孔隙度与积累量呈线性正相关,枯枝落叶积累可为植物生长创造良好的生境。土壤中主要营养物质随着枯枝落叶积累均有明显提高当积累量达600g/m^2时,有机质、N、P、K含量分别比无枯枝落叶层提高1.8倍、88.2%、2.15倍和37%。枯枝落叶积累对草原生产力有促进作用,在一定范围内  相似文献   
99.
Summary Cellulases in forest litter and soil occur in both bound and extractable forms. The proportion of total bound endocellulase activity (not extractable) increases during decomposition, whereas the proportion of bound exocellulase activity remains fairly constant. The proportions of bound enzymes differ among litter types with different chemical compositions. The proportion of bound activity is higher in mineral soil than in litter. We also investigated the effects of anion type (NaCl versus Na2SO4), concentration and pH on the extractability of cellulases and protein in two horizons of two forest soils. The extractability of cellulases increases as pH increases from 3.5 to 5.6. Anion type and concentration did not have consistent effects on extractability. However, there was a trend for higher extractability by sulfate than by chloride and with increasing salinity.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号