首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2956篇
  免费   117篇
  国内免费   324篇
林业   222篇
农学   225篇
基础科学   575篇
  449篇
综合类   1289篇
农作物   215篇
水产渔业   47篇
畜牧兽医   149篇
园艺   109篇
植物保护   117篇
  2024年   20篇
  2023年   40篇
  2022年   46篇
  2021年   72篇
  2020年   67篇
  2019年   73篇
  2018年   51篇
  2017年   92篇
  2016年   144篇
  2015年   131篇
  2014年   196篇
  2013年   164篇
  2012年   246篇
  2011年   304篇
  2010年   226篇
  2009年   212篇
  2008年   228篇
  2007年   239篇
  2006年   165篇
  2005年   128篇
  2004年   89篇
  2003年   68篇
  2002年   41篇
  2001年   49篇
  2000年   40篇
  1999年   46篇
  1998年   33篇
  1997年   24篇
  1996年   28篇
  1995年   22篇
  1994年   22篇
  1993年   23篇
  1992年   16篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1981年   1篇
排序方式: 共有3397条查询结果,搜索用时 15 毫秒
101.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   
102.
Wheat (Triticum durum L.) yields in the semi-arid regions are limited by inadequate water supply late in the cropping season. Planning suitable irrigation strategy and nitrogen fertilization with the appropriate crop phenology will produce optimum grain yields. A 3-year experiment was conducted on deep, fairly drained clay soil, at Tal Amara Research Station in the central Bekaa Valley of Lebanon to investigate the response of durum wheat to supplemental irrigation (IRR) and nitrogen rate (NR). Three water supply levels (rainfed and two treatments irrigated at half and full soil water deficit) were coupled with three N fertilization rates (100, 150 and 200 kg N ha−1) and two cultivars (Waha and Haurani) under the same cropping practices (sowing date, seeding rate, row space and seeding depth). Averaged across N treatments and years, rainfed treatment yielded 3.49 Mg ha−1 and it was 25% and 28% less than half and full irrigation treatments, respectively, for Waha, while for Haurani the rainfed treatment yielded 3.21 Mg ha−1, and it was 18% and 22% less than half and full irrigation, respectively. On the other hand, N fertilization of 150 and 200 kg N ha−1 increased grain yield in Waha by 12% and 16%, respectively, in comparison with N fertilization of 100 kg N ha−1, while for cultivar Haurani the increases were 24% and 38%, respectively. Regardless of cultivar, results showed that supplemental irrigation significantly increased grain number per square meter and grain weight with respect to the rainfed treatment, while nitrogen fertilization was observed to have significant effects only on grain number per square meter. Moreover, results showed that grain yield for cultivar Haurani was less affected by supplemental irrigation and more affected by nitrogen fertilization than cultivar Waha in all years. However, cultivar effects were of lower magnitude compared with those of irrigation and nitrogen. We conclude that optimum yield was produced for both cultivars at 50% of soil water deficit as supplemental irrigation and N rate of 150 kg N ha−1. However, Harvest index (HI) and water use efficiency (WUE) in both cultivars were not significantly affected neither by supplemental irrigation nor by nitrogen rate. Evapotranspiration (ET) of rainfed wheat ranged from 300 to 400 mm, while irrigated wheat had seasonal ET ranging from 450 to 650 mm. On the other hand, irrigation treatments significantly affected ET after normalizing for vapor pressure deficit (ET/VPD) during the growing season. Supplemental irrigation at 50% and 100% of soil water deficit had approximately 26 and 52 mm mbar−1 more ET/VPD, respectively, than those grown under rainfed conditions.  相似文献   
103.
The Central Asian countries face high water scarcity due to aridity and desertification but excess water is often applied to the main irrigated crops. This over-irrigation contributes to aggravate water scarcity problems. Improved water saving irrigation is therefore required, mainly through appropriate irrigation scheduling. To provide for it, after being previously calibrated and validated for cotton in the Fergana region, the irrigation scheduling simulation model ISAREG was explored to simulate improved irrigation scheduling alternatives. Results show that using the present irrigation scheduling a large part of the applied water, averaging 20%, percolates out of the root zone. Several irrigation strategies were analyzed, including full irrigation and various levels of deficit irrigation. The analysis focused a three-year period when experiments for calibration and validation of the model were carried out, and a longer period of 33 years that provided for an analysis considering the probabilities of the demand for irrigation water. The first concerned a wet period while the second includes a variety of climatic demand conditions that provided for analyzing alternative schedules for average, high and very high climatic demand. Results have shown the importance of the groundwater contribution, mainly when deficit irrigation is applied. Analyzing several deficit irrigation strategies through the respective potential water saving, relative yield losses, water productivity and economic water productivity, it could be concluded that relative mild deficits may be adopted. Contrarily, the adoption of high water deficit that produce high water savings would lead to yield losses that may be economically not acceptable.  相似文献   
104.
The importance of farmer participation in system design and management has been emphasized in previous studies. The purpose of this study was to identify the factors affecting farmer participation in irrigation management using survey research. The study was conducted in Doroodzan Dam Irrigation Network in Fars province, Iran. Multistage stratified random sampling was used to collect data from 270 farmers as the research sample. Results reveal that farmers’ attitudes toward participation in irrigation management, attitudes toward personnel of the State Water Authority and the Agricultural Extension Service Centers (AESCs), family size, the problem perception, dependence on the dam for water, and educational background have influenced their participation in irrigation management. By contrast, contact with information sources, animal units, sociability, age and agricultural experience did not affect farmers’ participation. Moreover, based on farmers’ perspectives, unequal water distribution among farms, dissatisfaction with Water Authority operators and high water fees and charges were the main problems and obstacles toward farmer participation in irrigation management.  相似文献   
105.
Accurate assessments of non-point source pollution and the associated evaluation of mitigation strategies depend on effective water quality monitoring programs. Intensive irrigation season water quality monitoring was conducted on three agricultural drains (6 h to daily sampling) along with analysis of decade long records from two larger agricultural drains (biweekly to monthly sampling) in the San Joaquin Valley, California. Analyses revealed significant temporal variability in concentrations of nutrients, salts, and turbidity over short time-scales (<1 day), as well as significant differences in monthly and annual mean concentrations. Statistical techniques were used to evaluate the sampling intensity required to meet rigorous confidence and accuracy criteria, as well as to evaluate the efficacy of different sampling strategies (e.g. grab samples versus composite samples). The number of samples required to determine mean constituent concentrations within 20% of the mean at a 95% confidence level ranged from 2 to 39 samples per month (SPM) for total phosphorus, 1-16 SPM for total nitrogen, 5-25 SPM for turbidity, and 1-3 SPM for electrical conductivity. Using a daily composite sample (4 subsamples per composite) instead of discrete samples was shown to maintain the same accuracy and confidence standards, while reducing the required sample number by up to 50%. This study emphasizes the value of a statistical approach for evaluating water quality monitoring strategies, and provides a framework through which cost-benefit analysis can be implemented in the development of monitoring plans.  相似文献   
106.
Individual effect of different field scale management interventions for water saving in rice viz. changing date of transplanting, cultivar and irrigation schedule on yield, water saving and water productivity is well documented in the literature. However, little is known about their integrated effect. To study that, field experimentation and modeling approach was used. Field experiments were conducted for 2 years (2006 and 2007) at Punjab Agricultural University Farm, Ludhiana on a deep alluvial loamy sand Typic Ustipsamment soils developed under hyper-thermic regime. Treatments included three dates of transplanting (25 May, 10 June and 25 June), two cultivars (PR 118 inbred and RH 257 hybrid) and two irrigation schedules (2-days drainage period and at soil water suction of 16 kPa). The model used was CropSyst, which has already been calibrated for growth (periodic biomass and LAI) of rice and soil water content in two independent experiments. The main findings of the field and simulation studies conducted are compared to any individual, integrated management of transplanting date, cultivar and irrigation, sustained yield (6.3-7.5 t ha−1) and saved substantial amount of water in rice. For example, with two management interventions, i.e. shifting of transplanting date to lower evaporative demand (from 5 May to 25 June) concomitant with growing of short duration hybrid variety (90 days from transplanting to harvest), the total real water saving (wet saving) through reduction in evapotranspiration (ET) was 140 mm, which was almost double than managing the single, i.e. 66 mm by shifting transplanting or 71 mm by growing short duration hybrid variety. Shifting the transplanting date saved water through reduction in soil water evaporation component while growing of short duration variety through reduction in both evaporation and transpiration components of water balance. Managing irrigation water schedule based on soil water suction of 16 kPa at 15-20 cm soil depth, compared to 2-day drainage, did not save water in real (wet saving), however, it resulted into apparent water saving (dry saving). The real crop water productivity (marketable yield/ET) was more by 17% in 25th June transplanted rice than 25th May, 23% in short duration variety than long and 2% in irrigation treatment of 16 kPa soil water suction than 2-days drainage. The corresponding values for the apparent crop water productivity (marketable yield/irrigation water applied) were 16, 20 and 50%, respectively. Pooled experimental data of 2 years showed that with managing irrigation scheduling based on soil water suction of 16 kPa at 15-20 cm soil depth, though 700 mm irrigation water was saved but the associated yield was reduced by 277 kg ha−1.  相似文献   
107.
The objective of this study is to present a new application of optical and radar remote sensing with high spatial (∼10 m) and temporal (a few days) resolutions for the detection of tillage and irrigation operations. The analysis was performed for irrigated wheat crops in the semi-arid Tensift/Marrakech plain (Central Morocco) using three FORMOSAT-2 images and two ASAR images acquired within one week at the beginning of the 2005/2006 agricultural season.The approach we developed uses simple mapping algorithms (band thresholding and decision tree) for the characterisation of soil surface states. The first images acquired by FORMOSAT and ASAR were processed to classify fields into three main categories: ploughed (in depth), prepared to be sown (harrowed), and not ploughed-not harrowed. This information was combined with a change detection analysis based on multitemporal images to identify harrowing and irrigation operations which occurred between two satellite observations.The performance of the algorithm was evaluated using data related to land use and agricultural practices collected on 124 fields. The analysis shows that drastic changes of surface states caused by ploughing or irrigation are detected without ambiguity (consistency index of 96%). This study provided evidence that optical and radar data contain complementary information for the detection of agricultural operations at the beginning of agricultural season. This information could be useful in regional decision support systems to refine crop calendars and to improve prediction of crop water needs over large areas.  相似文献   
108.
采用单因素试验方法,分别研究了表面活性剂、施镀温度、镀液pH值、转子转速、镀液中纳米粉体浓度5个因素对纳米SiC在Ni-P基化学复合镀层中沉积量的影响规律。结果表明:同时添加阴离子和非离子做表面活性剂,镀液温度达到(90±1)℃,pH值为5±0.5,机械搅拌转子转速为60 r/min,镀液中纳米粉体的浓度为35g/L时,镀层中能够沉积更多纳米粒子;而镀液中纳米粉体浓度为4.5g/L时,复合镀层的相对耐磨性较好。该工艺可用于农业机械关键工作零件表面强化。  相似文献   
109.
Knowledge of crop production in suboptimal environmental conditions not only helps to sustain crop production but also aids in the design of low-input systems. The objective of this study was to evaluate the effects of water stress imposed at low-sensitive growth stages (vegetative, reproductive, and both vegetative and reproductive) and level of nitrogen (N) supply (100 and 200 kg ha−1) on the physiological and agronomic characteristics of two hybrids of maize (Zea mays L.). A two-site field experiment was carried out using a randomized complete block design with three replications and a split-factorial arrangement. A water deficit (WD) was induced by withholding irrigation at different stages of crop development. The results showed that proline content increased and the relative water content, leaf greenness, 100-kernel weight and grain yield decreased under conditions of WD. The highest IWUE was obtained when maize endured WD at vegetative stage at two sites. The limited irrigation imposed on maize during reproductive stage resulted in more yield reduction than that during vegetative stage, compared with fully irrigated treatment. The 100-kernel weight was the most sensitive yield component to determine the yield variation in maize plant when the WD treatments were imposed in low-sensitive growth stages. The results of the statistical regression analysis showed liner relationships between RGR during a period bracketing the V8 or R3 stages and 100-kernel weight in all the WD treatments. The increase of N supply improved yield and IWUE when maize plant endured once irrigation shortage at vegetative stage. But, the performance of high N fertilizer reduced and eliminated when water deficit imposed once at reproductive stage and twice at vegetative and reproductive stages, respectively. Furthermore, the response of T.C647 hybrid to increase of N supply was stronger than S.C647 hybrid.  相似文献   
110.
在宁夏南部旱作农田,连续2年进行了0 kg/hm2(对照)、4 500、9 000和13 500 kg/hm24种不同秸秆覆盖量处理的栽培试验。结果表明,随着覆盖量的增加,在播种45 d后春玉米的株高、茎粗、叶面积等农艺性状观测值均随着明显提高,当覆盖量为13 500 kg/hm2时,平均比对照分别提高32.8%、48.4%和39.1%。当覆盖量为9 000 kg/hm2时,玉米的产量和水分利用效率分别较对照提高了16.2%和27.3%。当覆盖量大于9 000 kg/hm2时,其增产保墒效果不再明显提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号