首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   42篇
  国内免费   51篇
林业   38篇
农学   71篇
基础科学   3篇
  145篇
综合类   235篇
农作物   59篇
水产渔业   15篇
畜牧兽医   51篇
园艺   51篇
植物保护   49篇
  2024年   4篇
  2023年   7篇
  2022年   8篇
  2021年   11篇
  2020年   12篇
  2019年   16篇
  2018年   8篇
  2017年   14篇
  2016年   22篇
  2015年   31篇
  2014年   23篇
  2013年   67篇
  2012年   46篇
  2011年   53篇
  2010年   42篇
  2009年   38篇
  2008年   37篇
  2007年   36篇
  2006年   36篇
  2005年   20篇
  2004年   26篇
  2003年   18篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   8篇
  1998年   9篇
  1997年   8篇
  1996年   18篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有717条查询结果,搜索用时 15 毫秒
81.
The aim of this work was to study the effect of arbuscular mycorrhizal fungus Glomus mosseae on growth and nitrogen (N) metabolism of durum wheat (Tritcum durum) under various P soil contents. The analyses were extended to macro and micronutrient tissue concentrations, nitrate reductase and glutamine synthetase activities, as well as protein, aminoacids, pyridine dinucleotides and adenine nucleotides. Arbuscular mycorrhiza increased wheat growth in soil in which P availability was low and nitrate was the dominant N form. The root colonization occurred at the highest level in plants grown in limiting soil P and was inversely related to soil P content. The micorrhizal wheat plants contained also the highest concentrations of macro (P, K, Ca, N) and micronutrients (Fe, Zn, Mn) as well as free amino acids, protein, NAD, NADP, AMP, ADP, ATP in roots and leaves. In particular, the micronutrient tissue concentrations (Zn, Mn) supported that mycorrhiza actively modulated their uptake limiting interferences and optimizing growth better than the plant roots, like a very efficient “rootstock”. Control plants grown at the highest soil P did not reach the same concentration as the mycorrhizal plants. Nitrate reductase activities in the roots of mycorrhizal plants were higher than in the control ones, while glutamine synthetase activities were highest in the leaves. Protein and amino acids concentrations, as well as AMP, ADP, ATP, NAD(P), and NAD(P)H were also higher than in the control. Among the free amino acids in the roots, the high levels of glutamine, asparagine, arginine, support the view that ammonium was transferred through the arbuscules to the root cells where it was re‐assimilated in the cortical cells, forming high N : C ratio‐amino acids. They were transferred to the leaves where all the other N compounds could be largely synthesized using the carbon skeletons supplied by photosynthesis.  相似文献   
82.
The important enzyme in nitrogen (N) assimilation, nitrate reductase (NR), is an inducible enzyme influenced by many external (light, temperature, etc.) and internal (genotype) factors. The efficiency of the N assimilation system may vary with genotype and season. In the present study, the effects of season on NR activity in relation to N accumulation in maize plants were investigated. Six different cultivars of maize, namely Ganga-11, Deccan-103, Hi-starch (hybrids), Arun, Manjari and Vijay (composites), were sown during the monsoon (88-day crop duration) and in winter (150-day crop duration). In vivo NR activity in the last fully expanded leaf (LFEL), and the N contents of the whole plant and the LFEL were estimated at seven phenological growth stages. Three different states of N metabolism in maize, namely (i) low NR activity per unit leaf area per unit time coinciding with high accumulation of N, (ii) high NR activity coinciding with low N accumulation, and (iii) low NR activity coinciding with low N accumulation, were noted. These results clearly demonstrate that the relationships between N uptake and accumulation parameters change with the season and crop growth stage and are subject to a genotypic influence. Thus it is necessary to evaluate genotypes under similar environments to select a genotype with high N use efficiency. As these relationships are growth dependent, care must be taken to evaluate them at a particular phenological stage rather than on the basis of days after sowing.  相似文献   
83.
Abstract. We studied the effect of inoculation with three arbuscular-mycorrhizal (AM) fungi ( Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae ([Nicol & Gerd.] Gerd. & Trappe) and the addition of composted sewage sludge on root nitrate reductase (NR, EC 1.6.6.1.) activity, mycorrhizal colonization, plant growth and nutrient uptake in Retama sphaerocarpa L. seedlings afforested in a semiarid, degraded Mediterranean soil under well-watered and non-watered conditions. Six months after planting, the mycorrhizal inoculation and the irrigation of plants had a strong effect on the growth parameters. The effect on plant growth was a negative interaction between plant irrigation and mycorrhizal inoculation and a positive interaction between plant irrigation and composted sewage sludge addition. The latter treatment had a significant, but moderate, effect on the growth but conferred no additional benefit when combined with mycorrhizal inoculation. Mycorrhizal inoculation, composted sewage sludge and irrigation had a significant effect on NR activity in roots and on foliar nutrients. The irrigation significantly increased the positive effect of composted sewage sludge on NR activity and the concentrations of foliar N and K. The effect of mycorrhizal inoculation on NR activity did not depend on the water regime. The effectiveness of mycorrhizal inoculation on the establishment and growth of R. sphaerocarpa seedlings in these Mediterranean conditions was independent of water regime. The addition of composted sewage sludge was only effective when soil water was freely available. The combination of mycorrhizal inoculation and composted sewage sludge addition had no synergistic effect on plant growth.  相似文献   
84.
Some characteristics of nitrate reductase from sugar beet leaves shown in this paper were as follows:The nitrate reductase from sugar beet leaves required NADH as an electron donor.Accordingly,the nitrate reductase was classified as NADH-dependent(E.C.1.6.61).The Km value of the nitrate reductase for NADH and NO3^- were 0.86m mol and 0.18μ mol respectively.The optimum pH in reaction mixture solution for nitrate reduction activity was 7.5.The effect of variable concentrations of inorganic phosphorus in the reaction buffer on nitrate reductase activity was investigated.When the inorganic phosphorus concentration was below 35m mol,the nitrate reductase activity was increased with increase of inorganic phosphorus concentration.Conversely,when the inorganic phosphorus concentration was over 35m mol,the nitrate reductase activity was inhibited.The nitrate reductase activity assayed in vitro was 3.2 and 5.6times of that assayed in vivo under the condition of exogenous and endogenous ground substance respectively.  相似文献   
85.
Pesticides induce oxidative stress leading to generate free radicals and alternate the antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the oral toxicity of chlorpyrifos toward male rat and the oxidative stress of the sub-lethal dose (9 mg/kg; 1/25 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities of testicular tissue. Also, the protective effects of propolis extract (50 mg/kg b.w.) alone or in combination with chlorpyrifos were investigated. The oral administration of chlorpyrifos significantly caused elevation in LPO level by 1.79-fold as compared to control. The activities of antioxidant enzymes including CAT, SOD, GPx and GST were decreased significantly (23.66%, 27.75%, 29.13% and 11.52%) as well as the level of GSH decreased by 21.97% in testicular tissue as compared to control animals. Co-administration of propolis extract with chlorpyrifos or alone in male rats decreased LPO level, normalized CAT, SOD GPx and GST activities, while GSH content was increased in testicular tissue. We conclude that propolis extract significantly reduces chlorpyrifos-induced oxidative stress in rat testis and the protective effect of the pre-treatment with propolis extract as attenuating agent could be due to its antioxidant properties.  相似文献   
86.
【目的】了解不同年代育成水稻品种叶片硝酸还原酶活性(Nitrate reductase activity,NRA)的变化及其与净光合速率(Pn)和产量的关系,为吉林省水稻高产育种和栽培提供理论依据。【方法】以吉林省1958至2005年育成并在生产上推广的18个水稻品种为材料,研究水稻植株剑叶NRA变化及其与净光合速率和产量的关系。【结果】水稻叶片NRA在孕穗期较低,抽穗期最大,此后呈下降变化;NRA随品种的育成年代推进而降低。不同生育期水稻剑叶Pn在抽穗期达到最大,此后不断下降;随着育成年代的推进,Pn逐渐上升。NRA与净光合速率呈负相关,但不显著,与水稻产量呈显著负相关。【结论】水稻品种遗传改良提高了叶片的光合作用和产量,但NRA却随品种的育成年代推进而降低,这可能也是水稻氮肥利用效率降低的原因。  相似文献   
87.
The yeast Pichia membranaefaciens has antagonistic effects against a wide range of phytopathogenic fungi that cause postharvest fruit decay. This work evaluated the effects of P. membranaefaciens on the reactive oxygen species (ROS) metabolism and disease control in harvested citrus fruit (Citrus sinensis L. Osbeck). The lesion diameter caused by Penicillium italicum and Penicillium digitatum on citrus fruit was remarkably reduced when the fruit was point-inoculated or dipped in a suspension of P. membranaefaciens at 1 × 108 CFU mL−1. The application of P. membranaefaciens on citrus fruit enhanced the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase, as well as the levels of hydrogen peroxide, the superoxide anion and glutathione, but inhibited the decreasing ascorbic acid content. Furthermore, catalase activity was decreased by the same treatment. These results indicated that yeast treatment induced the synthesis of antioxidant enzymes which might have antagonistic effects against postharvest green and blue mold infection in citrus fruit.  相似文献   
88.
腐植酸对番茄苗期氮素代谢的影响   总被引:2,自引:0,他引:2  
腐植酸对肥料具有改性增效的作用,以番茄为供试材料,研究腐植酸增效剂不同添加量对番茄苗期生长及氮素代谢酶活性的影响,为腐植酸的开发应用提供参考依据。采用砂培试验方法,设置了向霍格兰营养液分别加入腐植酸增效剂0(HA0),1(HA1),2(HA2),5(HA3),10(HA4) mL/L处理。培养30天后,测定番茄的生长指标、植株养分含量、硝酸还原酶活性、谷氨酰胺合成酶和谷氨酸脱氢酶活性。添加适量腐植酸增效剂能促进番茄苗期生长,HA3处理番茄根系干重比HA0提高了31.68%,HA1处理番茄地上部干重最大。添加腐植酸可以提高番茄苗期叶片叶绿素含量,HA3处理番茄苗期叶片叶绿素总量和类胡萝卜素含量最高,分别比HA0提高了17.11%,24.04%。添加适量腐植酸增效剂能增加番茄苗期根系和地上部对氮素的吸收,HA3处理的番茄根系、地上部及总氮素积累量比HA0分别提高了30.61%,20.24%,21.54%。添加腐植酸增效剂可以调控番茄根系和叶片氮素代谢过程,提高了氮素代谢酶活性,与HA0相比,HA4处理根系硝酸还原酶活性最大,HA3处理根系谷氨酰胺合成酶活性最高,HA2处理根系谷氨酸脱氢酶的活性最大;HA3处理番茄苗期叶片中硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶活性最大,与HA0处理相比分别提高了38.27%,64.54%,106.63%。添加腐植酸增效剂可以促进番茄苗期的生长和对氮素的吸收,提高氮素代谢酶活性,处理中以在营养液中添加5 mL/L腐植酸增效剂效果最佳,腐植酸增效剂添加量低于5 mL/L时,对番茄苗期的生长及氮素代谢具有明显的促进作用。  相似文献   
89.
90.
桑萜类生物合成酶HMGR的生物信息学分析   总被引:3,自引:0,他引:3  
萜类化合物是桑叶具有药用功效的主要化学成分之一。利用Vector NTI Suit 8等工具,对GenBank中的桑萜类生物合成关键酶3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)基因的核苷酸和氨基酸序列进行了生物信息学分析。桑hmgr基因序列以基因组DNA形式登录,其中1-5 905 bp区间为该基因序列,包括启动子、CDS和内含子序列,推测其编码蛋白的分子式为C2602H4181N715O786S29,亚细胞定位于线粒体,存在跨膜结构域,且含有22个氨基酸的质体转运肽,是含有HMG-CoA-reductase-classⅠ重要功能域的疏水性蛋白,二级结构以无规则卷曲和α-螺旋为主,三级结构中含有2个HMG-CoA和2个NADP(H)结合位点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号