首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   7篇
  国内免费   2篇
林业   19篇
农学   5篇
  108篇
综合类   30篇
农作物   3篇
畜牧兽医   3篇
园艺   14篇
植物保护   13篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   17篇
  2012年   15篇
  2011年   17篇
  2010年   6篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   8篇
  1996年   10篇
  1995年   1篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
91.
A survey on the endorhizal status of 39 fruit crops of 25 families, indicated that 22 fruit crops had arbuscular mycorrhizal (AM)–, four had dark septate endophyte (DSE)–fungal association, and 13 had dual colonization of AM and DSE fungi. Fruit crops were capable of forming Arum‐, Paris‐, or intermediate‐types of AM morphologies of which intermediate‐type was common. To our knowledge, we report for the first time AM in 10 fruit crops and DSE‐fungal association in 17 fruit crops. The extent of AM‐ and DSE‐fungal colonization ranged from 41% to 98% and < 1% to 89.9%, respectively, in different fruit crops. Arbuscular mycorrhizal–fungal spore numbers in the rhizosphere ranged from 6 to 61 spores per 25 g of soil. Arbuscular mycorrhizal–fungal spores belonging to Acaulospora, Glomus, and Scutellospora were isolated from the rhizosphere soil.  相似文献   
92.
盐胁迫下‘霞多丽’葡萄幼苗接种地表球囊霉效应初探   总被引:1,自引:0,他引:1  
 研究了不同浓度盐胁迫条件下, 地表球囊霉( Glomus versiforme Berch) 对‘霞多丽’葡萄幼苗耐盐性的菌根效应。结果表明, 接种的植株生物量均高于不接种对照; 随着盐胁迫强度的升高, 地表球囊霉对植株根系侵染率呈递减趋势, 但霞多丽对菌根的依赖性更强, 在NaCl 0120 mol·L - 1时依赖性达到最高。  相似文献   
93.
Summary Using two tussock grasses, Agropyron desertorum, a grazing-tolerant species, and A. spicatum, a grazing-sensitive species, we measured the responses of vesicular-arbuscular mycorhizae (VAM) to clipping and soil moisture status. The clipping was carried out over a 4-year period (1982–1985). For the soil moisture × clipping studies, a rainout shelter was used to create drought stress, and irrigation was used to create high moisture conditions over a 2-year period (1984 – 1985). No consistent patterns in VAM infection frequency and VAM fungal spore counts were observed, either between species or among treatments. Increased moisture tended to increase total root and total VAM length, but there were no consistent moisture × clipping effects. Nor did the phenology of the fungus follow consistent patterns: there were similar lengths of root containing vesicles and arbuscules in 1984, and predominantly vesicles in 1985. The greatest effect was a large difference in VAM activity between years regardless of treatment, despite our attempts to use extreme environmental conditions and a rigorous sampling design. The VAM of both plant species were highly correlated. We postulate that VAM are highly plastic and that they respond to environmental pressures that we do not yet understand.  相似文献   
94.
Summary Alfalfa (Medicago sativa, L. cv Aragón) plants were grown under greenhouse conditions in pots of inert sand and vermiculite. The plants were inoculated with Rhizobium meliloti strain 102F28, with Glomus fasciculatus or with a mixture of both microorganisms. Plants inoculated with both Rhizobium and Glomus had the highest shoot dry weight and the lowest root-to-shoot ratio. Roots from dually inoculated plants also had a higher oxygen uptake and nodule nitrogenase activity than those from plants inoculated with either of the two microsymbionts alone. However, the dry weight of the roots from only VAM-infected plants was higher than those from Rhizobium or from Rhizobium plus Glomus-inoculated ones. These differences did not correlate with succinate dehydrogenase activity, which was similar between treatments. Nutrient element concentrations were increased in dually infected plants in comparison with those of plants inoculated with only Rhizobium or Glomus. These data suggest that Rhizobium may affect fungal metabolism and that the effect is not achieved via the tricarboxylic acid pathway.  相似文献   
95.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   
96.
Summary We selected two isolates of Rhizobium for cowpea (Vigna unguiculata) with sterilized soil tests and two different isolates by non-sterilized soil testing. The four rhizobia were then paired individually with either Glomus pallidum, Glomus aggregatum, or Sclerocystis microcarpa in separate, sterilized, or non-sterilized soil experiments. The purpose of the experiments was to determine the effect of soil sterilization on the selection of effective cowpea rhizobia, and to see whether these rhizobia differed in their effects on cowpea growth when paired with various vesicular-arbuscular mycorrhizal (VAM) fungi. Our experiments showed that the rhizobia selected in sterilized soil tests produced few growth responses in the cowpea compared to the other introduced rhizobia, irrespective of pairing with VAM fungi in sterilized or non-sterilized soil. In contrast, the two rhizobia initially selected by non-sterilized soil testing significantly improved cowpea growth in non-sterilized soil, especially when paired with G. pallidum. Our results suggest that it is important to select for effective rhizobia in non-sterilized soil, and that pairing these rhizobia with specific, coselected VAM fungi can significantly improve the legume growth response.  相似文献   
97.
Summary The influence of vesicular-arbuscular mycorrhizae on the efficiency of triple superphosphate and rock phosphate fertilizers was compared in two tropical, acid, P-fixing soils (Ivory Coast) in which the available P was labelled with 32PO inf4 sup3- . Both soils were planted with micropropagated oil palms. The growth reponses to the fertilizer applications were low unless accompanied by VAM inoculation, but both fertilizers were equally available to plants. Isotopic-dilution kinetics analyses indicated that the rock phosphate was solubilized in both soils and there was an enrichment of the labile pool of plant-available P, similar to that with superphosphate. The specific activity and the fraction of P derived from either fertilizer was similar in both mycorrhizal and non-mycorrhizal plants, showing that both absorbed P from the same labile pool of P in the fertilized soils. However, VAM inoculation increased the fertilizer utilization coefficient of plants 2.7- to 5.6-fold, depending on the soil and fertilizer. We conclude that VAM inoculation increases fertilizer efficiency, as much of rock phosphate as of superphosphate, for plants growing in acid, P-fixing soils, and the processes involved are not different for the two fertilizers.  相似文献   
98.
We studied the effects of varied collembolan numbers on three compensatory mechanisms of nutrient uptake: fine root mass, endomycorrhizal development, and physiological uptake capacity. We grew ash (Fraxinus pennsylvanica) with or without the arbuscular mycorrhizal fungus Glomusintraradices, with 0, 10 or 50 initial Collembola (Folsomia candida). After 83 d root and uptake rates, endomycorrhizal development, and plant biomass were determined. Plant mass increased with Collembola number. Collembola interacted with mycorrhizae in their effects on N uptake and leaf N. Collembola in the absence of mycorrhizal roots were associated with lower N uptake and leaf N at 10 than at 0 or 50 initial Collembola. In contrast, Collembola in the presence of mycorrhizal roots were associated with the highest rate of N uptake and leaf N at 10 versus 0 or 50 initial Collembola. Hence as initial Collembola number increased, the relative importance of root system traits that determined N uptake changed from root physiological uptake capacity, presence of mycorrhizal roots, to fine root biomass.  相似文献   
99.
The rose of an isolate of the arbuscular mycorrhizal (AM) fungusGlomus mosseae in the protection ofMedicago sativa (+Rhizobium meliloti) against salt stress induced by the addition of increasing levels of soluble salts was studied. The interactions between soluble P in soil (four levels), mycorrhizal inoculum and degree of salinity in relation to plant growth, nutrition and infective parameters were evaluated. Salt stress was induced by sequential irrigation with saline water having four concentrations of three salts (NaCl, CaCl2, and MgCl2).15N-labelled ammonium sulphate was added to provide a quantitative estimate of N2 fixation under moderate to high salinity levels. N and P concentration and nodule formation increased with the amount of plant-available P or mycorrhizal inoculum in the soil and generally declined as the salinity in the solution culture increased from a moderate to a high level. The mycorrhizal inoculation protected the plants from salt stress more efficiently than any amount of plant-available P in soil, particularly at the highest salinity level applied (43.5 dS m–1). Mycorrhizal inoculation matched the effect on dry matter and nutrition of the addition in the soil of 150 mg P kg–1. Nevertheless the highest saline solution assayed (43.5 dS m–1) affected more severely plants supplemented with phosphorus than those with the addition of mycorrhizal inoculum. Such a saline-depressing effect was 1.5 (biomass), 1.4 (N) and 1.5 (P) times higher in plants supplied with soluble phosphate than with AM inoculum. Mechanisms beyond those mediated by P must be involved in the AM-protectioe effect against salinity. The15N methodology used allowed the determination of N2 fixation as influenced by different P applications compared to mycorrhizal inoculation. A lack of correlation between nodule formation and function (N2 fixation) was evidenced in mycorrhizal-inoculated plants. In spite of the reduced activity per nodule in mycorrhizal-inoculated In spite of the reduced activity per nodule in mycorrhizal-inoculated plants, the N contents determined indicated the highest acquisition of N occurred in plants with the symbiotic status. Moreover, N and P uptake increased while Ca and Mg decreased in AM-inoculated plants. Thus P/Ca ratios and cation/anion balance in general were altered in mycorrhizal treatments. This study therefore confirms previous findings that AM-colonized plants have optional and alternative mechanisms available to satisfy their nutritive requirements and to maintain their physiological status in stress situations and in disturbed ecosystems.  相似文献   
100.
We investigated the feeding preferences of six species of mites and collembolans for three fungi commonly associated with roots of Acer saccharum (Glomus macrocarpum, Alternaria alternata and Trichoderma harzianum), from a maple-forest soil in southern Ontario, Canada. Experiments were also conducted in vitro to determine animal feeding responses to (1) increasing quantities of hyphal biomass, (2) the presence of root vs. litter fungal substrates, and (3) hyphae of different widths of Glomus macrocarpum. The results indicate that arthropods prefer to graze in the litter region rather than in the deeper soil layers. Under ideal moisture/temperature conditions, animals are forced to the lower regions by interspecific interactions. They prefer to graze on hyphae of conidial fungi rather than on those of arbuscular mycorrhizal fungi. When arbuscular mycorrhizal fungal hyphae are grazed, there is a clear preference for the narrower hyphae, which are those further away from the root. The thicker hyphal segments, commonly found connecting absorptive hyphal fans to roots, were less preferred. These data are not consistent with the hypothesis that microarthropods are detrimental to arbuscular mycorrhizal associations, and suggest that Glomalean fungi may have evolved mechanisms to deter grazing by microarthropods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号