首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   60篇
  国内免费   28篇
林业   38篇
农学   31篇
基础科学   3篇
  32篇
综合类   141篇
农作物   53篇
水产渔业   43篇
畜牧兽医   107篇
园艺   12篇
植物保护   168篇
  2024年   3篇
  2023年   18篇
  2022年   19篇
  2021年   27篇
  2020年   32篇
  2019年   32篇
  2018年   30篇
  2017年   17篇
  2016年   25篇
  2015年   24篇
  2014年   31篇
  2013年   33篇
  2012年   37篇
  2011年   36篇
  2010年   35篇
  2009年   23篇
  2008年   24篇
  2007年   30篇
  2006年   27篇
  2005年   22篇
  2004年   16篇
  2003年   11篇
  2002年   9篇
  2001年   10篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有628条查询结果,搜索用时 46 毫秒
91.
The relation between the frequency of legume crops in a rotation and the root rot severity in pea was examined in a field survey. Additionally, greenhouse experiments were performed with soil samples from legume rotation trials or from farmers' fields. The frequency of pea crops in current rotations proved to be much less than the recommended value of one in six years. The correlation between pea root rot and the number of years that pea or other legumes were not grown on the field under consideration (called crop interval) was weak. Root rot severity correlated better with the frequency of peas or legumes in general over a period of 18 years, but the frequency still explained only a minor fraction of the variation in disease index. Some experimental data pointed to the occurrence of a highly specific pathogen microflora with continuous cropping of only one legume species, but this phenomenon probably does not occur in farmers' fields. In field samples, root disease index for pea correlated well with that for field bean. The survival of resting structures of pathogens such asAphanomyces euteiches probably explains why the frequency of legume cropping has a higher impact than crop interval on root disease incidence. Pea-free periods and legume frequencies have a poor predictive value for crop management purposes.  相似文献   
92.
Validated protocols for DNA purification and PCR amplification are reported for detection of Phytophthora cactorum in diseased strawberry plants. To remove PCR inhibitors, necrotic strawberry tissues were soaked in 5% alconox solution for >12 h before DNA extraction, and the extracted genomic DNA was embedded in an agarose gel chamber and subjected to electrophoresis. The purified DNA was amplified reliably by PCR. Nested PCR was used to detect a portion of the rRNA gene of P. cactorum in samples. In the first round of PCR, primers ITS1 and ITS4 amplified fragments of varying sizes from total genomic DNA from diseased strawberry plants. In the second round of PCR, a 1:25 dilution of the first-round PCR products was used as template with two P. cactorum- specific primer pairs (BPhycacL87FRG and BPhycacR87RRG, which amplified a 340-bp fragment and a 480-bp fragment from the rRNA gene; and BPhycacL89FRG and BPhycacR176RRG, which amplified a 431-bp fragment). Validation tests using culture-based isolations as a standard for comparison indicated that the DNA purification and PCR primers and amplification protocols were reliable and specifically amplified a portion of the rRNA gene of P. cactorum from necrotic root, crown and petiole tissues of strawberry naturally infected by the pathogen.  相似文献   
93.
94.
Enzyme-derived products obtained from thio-functionalised glucosinolates showed high fungitoxicity, a wide activity spectrum and special physicochemical properties, which suggest their potential as alternatives to commercial fumigants for controlling several soil-borne pathogens. © 1999 Society of Chemical Industry  相似文献   
95.
Ethanolic extracts of 58 Malaysian plants belonging to 24 different families were screened for antifungal activity against seven plant pathogens using the filter paper disc diffusion technique. Two varieties of Piper betle, showed strong activity against all the pathogens tested (Colletotrichum capsici, Fusarium pallidoroseum, Botryodiplodia theobromae, Alternaria alternata, Penicillium citrinum, Phomopsis caricae-papayae and Aspergillus niger), with inhibition diameters significantly (P<0·01) bigger than 2·5 mg ml−1 prochloraz or 10 mg ml−1 clotrimazole. The minimum inhibitory concentrations of the ethanolic extracts of P. betle against these plant pathogens ranged between 0·01 mg ml−1 and 1 mg ml−1. Thirty-four other plants (Kucing gala, Limau batik, Bertholletia excelsa, Bixa orellana, Caesalpinia pulcherrima, Cerbera odollam (fruits and leaves), Colocasia gigantea, Curcuma domestica, Curcuma manga, Derris eliptica, Elephantopus scaber, Eleusine indica, Eugenia polyantha, Euphorbia hirta, Euphorbia tirucalli, Gardenia florida, Hedyotis auricularia, Hibiscus rosa-sinensis, Juniperus chinensis (three varieties), Lawsonia inermis, Lecythis ollaria, Mentha arvensis, Mimusops elengi, Ocimum sanctum, Phyllanthus niruri, Piper nigrum, Piperomia pellucida, Pedilanthus tithymaloides, Polygonum minus, Spondias dulcis, Solanum nigrum, Tinospora tuberculata) showed selective antifungal activity, while 21 species were inactive.  相似文献   
96.
Fungal propagules existing in the natural environment can easily be transmitted to the human body, mostly by inhalation of contaminated air or direct contact onto the skin, nails, and mucosa. Fungal infections in humans are, as compared to viral and bacterial infections, rarely serious (life-threatening) unless the immune system is weakened. Because azole fungicides (demethylation inhibitors, DMIs) are among the most important antifungal compounds used broadly in human and animal medicine as well as in agriculture and material protection, fungal propagules may come into contact with azoles almost everywhere, presenting a potential “crossover-use-pattern” and “cross-contamination-risk” for resistant propagules in all areas. A “hot-spot” in terms of the emergence of azole resistance in a fungal species is defined as a habitat in which the species is actively propagating and exposed to a fungicidally effective azole at available concentrations high enough to select for resistant individuals, potentially multiplying and spreading to other habitats. Intrinsic antifungal resistance may exist in less sensitive or insensitive species independent of previous exposure to antifungal compounds, whereas acquired antifungal resistance can evolve if triggered by the exposure of an originally sensitive species (or population) to agricultural or medical antifungal agents, resulting in the selection of resistant individuals. The origin and risks of these developments in medical settings and the wider environment are elucidated for the most relevant life-threatening fungal human pathogens, including several species of Cryptococcus, Candida, Pneumocystis, Aspergillus, Histoplasma, Coccidioides, Rhizopus, Mucor, Fusarium, and Scedosporium.  相似文献   
97.
An analysis of records of plant pathogens first identified in Great Britain from 1970 to 2004 (inclusive) was undertaken to determine the numbers of new species that have become established over time. Results show that the numbers of newly recorded pathogens have not varied significantly. Of the 234 pathogens recorded for the first time between 1970 and 2004, 157 were fungi, 27 were oomycetes, 26 were viruses, 23 were bacteria, and one was a phytoplasma. Approximately 53% of pathogens were found on ornamental crops, 16% on horticultural crops, 15% on wild native species, 12% on agricultural crops, 2% on pasture plants and 2% on exotic forestry tree species. Where the origin of introductions was known or strongly suspected, 47% came from the Netherlands. About 38% of newly recorded pathogens with information on the location of first record were discovered in the South East region of England. Plant Pathologists regarded 19% of all new pathogens as important because of actual or potential economic/environmental losses. The results indicate that the numbers of new or important pathogens establishing in recent years are not increasing and that most new findings are associated with ornamental plants.  相似文献   
98.
A vineyard of Vitis vinifera cv. Sangiovese was surveyed for incidence of esca and xylem sap collection. Sap samples were collected from healthy vines and from those with dual infection by Phaeomoniella chlamydospora (Pch) and Togninia minima (Tmi) or triple infection by Pch, Tmi and Fomitiporia mediterranea (Fme), during each early spring in a 3-year period (2001–2003). In order to analyse the possible trends in the climatic data, temperature and rainfall were assessed. At sap harvesting, aliquots of sap were assayed for phytotoxicity and extracted with ethyl acetate for phytotoxin recovery. Moreover, the exopolysaccharide (EPS) content was evaluated on several sap samples during the bleeding period. Conidia of Pch and Tmi, mycelium of Fme and their secondary metabolites were found in the sap of the esca-affected vines, indicating that the pathogens and their by-products together with some defence substances were accumulated and then translocated. Bioactivity tests showed toxicity of the sap from esca-affected vines to healthy detached leaves of cv. Sangiovese. The daily amount of sap, the pH, and the volume (Jv) and solute (Js) fluxes were analysed as a function of the infecting fungi. Pullulan, glucogalactomannan(s) and arabinogalactan(s) are the main EPS in the esca-infected vines, whereas in the sap of healthy vines no traces of pullulan were found. Scytalone and isosclerone usually produced in vitro by Pch and Tmi were also detected in the sap of vines infected by Pch and Tmi or by Pch, Tmi and Fme. The endogenous phytohormone content of healthy vines evaluated by the cutting bioassay was different from that of infected vines. Four phenolics belonging to three classes e.g., benzoic acid derivatives, stilbenes and flavonol-glycosides were separated and identified by HPLC.  相似文献   
99.
A healthy soil is often defined as a stable soil system with high levels of biological diversity and activity, internal nutrient cycling, and resilience to disturbance. This implies that microbial fluctuations after a disturbance would dampen more quickly in a healthy than in a chronically damaged and biologically impoverished soil. Soil could be disturbed by various processes, for example addition of a nutrient source, tillage, or drying-rewetting. As a result of any disturbance, the numbers of heterotrophic bacteria and of individual species start to oscillate, both in time and space. The oscillations appear as moving waves along the path of a moving nutrient source such as a root tip. The phase and period for different trophic groups and species of bacteria may be shifted indicating that succession occurs. DGGE, Biolog and FAME analysis of subsequent populations in oscillation have confirmed that there is a cyclic succession in microbial communities. Microbial diversity oscillates in opposite direction from oscillations in microbial populations. In a healthy soil, the amplitudes of these oscillations will be small, but the background levels of microbial diversity and activity are high, so that soil-borne diseases will face more competitors and antagonists. However, soil-borne pathogens and antagonists alike will fluctuate in time and space as a result of growing plant roots and other disturbances, and the periods and phases of the oscillations may vary. As a consequence, biological control by members of a single trophic group or species may never be complete, as pathogens will encounter varying populations of the biocontrol agent on the root surface. A mixture of different trophic groups may provide more complete biological control because peaks of different trophic groups occur at subsequent locations along a root. Alternatively, regular addition of soil organic matter may increase background levels of microbial activity, increase nutrient cycling, lower the concentrations of easily available nutrient sources, increase microbial diversity, and enhance natural disease suppression.  相似文献   
100.
API 50CH and API ZYM systems were used to characterize fifty-three strains of Clavibacter michiganensis subsp. sepedonicus from different geographic locations and several reference strains of the same and different species, including other potato pathogens. Clavibacter michiganensis subsp. sepedonicus strains displayed a high level of homogeneity, both in carbohydrate utilization and in enzymatic activity. Using API 50CH and API ZYM it was possible to differentiate C. michiganensis subsp. sepedonicus strains from the remaining taxa analysed in this study, which included representative strains of the other subspecies of C. michiganensis as well as other bacterial pathogens affecting potatoes. Therefore, these systems could be used as an effective method to characterize C. michiganensis subsp. sepedonicus. Such a procedure would constitute an alternative system to the conventional nutritional and physiological identification tests currently included in the official methods employed in the European Union to detect and identify this bacterium. The results obtained with the API systems agreed with the current taxonomic classification of C. michiganensis, clearly separating sepedonicus from the other subspecies belonging to this species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号