Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley. 相似文献
A field study was conducted in the province of Burgos (Castile, NW of Spain) to assess the role and influence of the different anthropic use of soil on the oribatid mite communities (Acari, Oribatida).Soil samples from 20 representative soil sites of the Castilian upland steppes, with cultured, pastureland or forest soil uses, were taken in spring and autumn 2000. Thereafter, soil samples were analysed in terms of their mesofaunal biodiversity, measured using the real and relative diversity of the oribatid mite communities.Collected individuals were identified to species level, being altogether 111 Oribatid species. Results from communities' ordination analysis showed clear gradients based on community variables. One of these was defined by plots with high values of diversity and species richness which correspond to the less anthropic natural soils, mainly oak forest. In contrast, the most anthropic agrosystems soils, including extensive cereal crops, most of them receiving only mineral fertilisation or having human management, were placed in opposite gradients. Differences in biodiversity between crop lands and natural soils were also confirmed by ANOVA. The seasonality, measured in terms of difference between spring and autumn plots, played a minimum role in explaining differences of diversity. Nevertheless autumn diversity values were slightly higher than those of spring, except for crops. 相似文献
The impacts of fallow on soil fertility, crop production and climate-forcing gas emissions were determined in two contrasting
legumes, Gliricidia sepium and Acacia colei, in comparison with traditional unamended fallow and continuous cultivation systems. After 2 years, the amount of foliar
material produced did not differ between the two improved fallow species; however, grain yield was significantly elevated
by 55% in the first and second cropping season after G. sepium compared with traditional fallow. By contrast, relative to the unamended fallow, a drop in grain yield was observed in the
first cropping season after A. colei, followed by no improvement in the second. G. sepium had higher foliar N, K and Mg, while A. colei had lower foliar N but higher lignin and polyphenols. In the third year after fallow improvement, a simulated rainfall experiment
was performed on soils to compare efflux of N2O and CO2. Improved fallow effects on soil nutrient composition and microbial activity were demonstrated through elevated N2O and CO2 efflux from soils in G. sepium fallows compared with other treatments. N2O emissions were around six times higher from this nitrogen-fixing soil treatment, evolving 69.9 ngN2O–N g−1soil h−1 after a simulated rainfall event, compared with only 8.5 and 4.8 ngN2O–N g−1soil h−1 from soil under traditional fallow and continuous cultivation, respectively. The findings indicate that selection of improved
fallows for short-term fertility enhancement has implications for regional N2O emissions for dry land regions. 相似文献
With increasing urbanization, the demands for high quality agricultural products induced changes in local cropping patterns. Although grain production still occupied a large portion in sown and planted areas, the share of sown areas declined from 67% to 44% for total grain crops, and 54% to 35% for rice between 1989 and 2002 in Fujian province. The change in crop spectrum and land use by urbanization has resulted in two extreme trends in topsoil — nutrient depletion in grain-dominated regions and nutrient overload in city suburbs. The positive correlation between nitrogen balance and local urban population in some years showed that urbanization affected nutrient balance in topsoil. The rapid changes in land use and crop spectrum caused by urbanization therefore created a challenge to the traditional soil nutrient management derived mainly from paddy fields and an urgent need for new management schemes in the province. The study provides valuable insights into nutrient management and soil sustainability in the context of rapid urbanization and population growth in Fujian. 相似文献
ABSTRACTLack of crop diversification with suitable vegetable-based cropping system is a major constraint in limiting the productivity and sustainability of north-western Indian sub-Himalayas. To find out a sustainable vegetable-based cropping system in this region, a three year colocasia-based vegetable intensive experiment was conducted at Hawalbagh, Almora, India in a sandy clay loam soil under sub-temperate climatic conditions. Seven colocasia-based vegetable cropping systems along with rice–wheat system were compared under recommended package and practices. The system productivity in terms of colocasia equivalent yield was highest under colocasia–onion–frenchbean (52.38 Mg ha?1) system. Sustainable yield index was highest with colocasia–gardenpea–frenchbean system (0.86). After 3 years, total soil organic carbon (0–5%), available N (2–22%), P (–7% to 14%) and K (3–15%) concentrations were increased in all cropping systems except rice–wheat system, where negative balance of available P (7%) was observed over that of initial soil. Significantly higher soil microbial activity, soil carbohydrate, dehydrogenase, protease, acid and alkaline phosphatases activity were observed under colocasia–onion system. The results suggest that colocasia–onion–frenchbean system with higher productivity improves soil fertility and enhances enzymatic activities. 相似文献
A fraction of the C of residues incorporated into soil diffuses into the adjacent soil where it is eventually mineralised by microorganisms. Our aim was to quantify the contribution of this adjacent soil to the overall mineralisation of residue-C. For this, we incorporated two different residues labelled with 13C, with contrasting biochemical characteristics, namely mature wheat straw and young rye leaves, in soil cores. When 15% mineralisation of residue-C was measured for both residues, we separated a particulate fraction (the residues), the adjacent soil (4-5 mm thick) and a distant soil fraction, and incubated them separately for 5 h. We found that 76% of the mineralised wheat straw-C came from the particulate fraction and 23% from the soil adjacent to the residues. For rye leaves, 67% of the evolved CO2 came from the particulate fraction and 33% from the adjacent soil. It showed that the adjacent soil had a significant role in the mineralisation of carbon from the residues, even if the main source of residue-derived CO2 was the particulate fraction itself. The functional importance of the soil adjacent to the residues increased with the amount of soluble organic compounds that had been leached from the residue into the adjacent soil, suggesting a strong interaction between the initial quality of the crop residue and the resulting spatial heterogeneity of the decomposing microorganisms and C within the soil. 相似文献
The extent and persistence of the effect of soil compaction in a system with annual ploughing were investigated in 21 long-term field experiments in Sweden with a total of 259 location-years. Crop yield, soil physical properties and plant establishment were determined. All experiments had two common treatments: control (no extra traffic) and compacted (350 Mg km ha−1 of experimental traffic in the autumn prior to ploughing), using a tractor and trailer with traditional wheel equipment and an axle load restricted to 4 Mg. During the rest of the year, both treatments were conventionally and equally tilled. The compaction was repeated each autumn for at least 7 years, and the yield was determined each year until 5 years after the termination of the compaction treatment.
Compaction decreased the porosity and the proportion of large pores and increased the tensile strength of dry aggregates. On clay and loam soils, it decreased the proportion of fine aggregates in the seedbed and the gravimetric soil water content in the seedbed.
The yield in the compacted treatment declined compared with the control during the first 4 years, after which it reached steady state. During this steady state, the compaction treatment caused a yield loss of 11.4%, averaged over 107 location-years. Within 4–5 years after the termination of the compaction treatment, the yield returned to the control level. The average yield loss at individual sites increased with increasing clay content.
Results from additional treatments indicated that yield loss was linearly correlated with the amount of traffic up to 300–400 Mg km ha−1. With greater ground contact pressure or a greater soil water content at time of traffic, there was a greater yield loss.
Soil compaction effects on yield were similar for all spring-sown crops, and the percentage yield loss seemed to be independent of the yield. In a few location-years with winter wheat there was on average no yield decrease.
There were 5.1% less plants in the compacted treatment than in the control. The yield decrease was significantly correlated with the number of plants.
Between years results were highly variable, and no consistent correlations between yield loss and soil water content at the time of traffic or the weather conditions during the growing period were found. Soil compaction affected yield during years with good as well as poor conditions for crop growth. 相似文献