首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
  国内免费   2篇
林业   2篇
农学   4篇
  39篇
综合类   17篇
农作物   2篇
水产渔业   1篇
畜牧兽医   2篇
园艺   2篇
植物保护   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   17篇
  2012年   7篇
  2011年   1篇
  2010年   6篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有70条查询结果,搜索用时 0 毫秒
11.
A field experiment was conducted to evaluate the effect of integrated use of farmyard manure and bio-inoculants on wheat productivity for two years in succession. Increasing levels of farmyard manure (FYM) up to 15 t ha?1 significantly (p ≤ 0.05) improved the dry matter accumulation, effective tillers per m row length, and grain weight per spike in both the years. Application of 15 t ha?1 FYM caused significant increase in spikelets per spike and grains per spike over control and 5 t ha?1 during two consecutive years. Inoculation with MSX-9 strain of Azotobacter chroococcum produced significantly higher dry matter accumulation to 25.63, 13.33, 7.78 and 23.66, 8.35, 5.50% over uninoculation, Azospirillum brasilense (SP-7) and Azospirillum lipoferum (A-5) at harvest during 1999–2000 and 2000–2001, respectively. Incorporation of 15 t ha?1 FYM significantly (p ≤ 0.05) enhanced grain and straw yield to 62.45 and 38.05%; 56.66 and 36.28%; 59.42 and 37.52% over control in 1999–2000, 2000–2001 and pooled analysis, respectively. The grain and straw yield of wheat significantly (p ≤ 0.05) enhanced to 26.51, 10.10, 7.54 and 14.45, 5.77, 3.16% through A. chroococcum (MSX-9), A. brasilense (SP-7) and A. lipoferum (A-5) over uninoculation.  相似文献   
12.
姜明 《安徽农业科学》2010,38(28):15705-15706
[目的]研究复合菌肥对作物的效果。[方法]用圆褐固氮菌和巨大芽胞杆菌进行混合培养,其液体培养物制成2.4×109个/ml菌液,将原菌液分别稀释成3×108、6×108、9×108、1.2×109个/ml4个浓度。与清水对照,比较其对玉米生长的影响。同时,制备以圆褐固氮菌和巨大芽孢杆菌为单一菌种的单一菌剂,浓度为3×108个/ml,与等量等浓度的菌种混合培养物的菌肥对比,观察玉米生长情况。[结果]混合菌肥对植物的促进作用比单一菌肥明显。在混合菌肥的4种比例中,浓度为9×108个/ml剂量对玉米株高、干重、根长的促进效果最显著。[结论]微生物菌剂的使用可以为作物的进一步高产稳产打下基础。  相似文献   
13.
微生物肥料对植物生长的影响   总被引:9,自引:1,他引:9  
人工选育的植物有益细菌作为生物肥料 ,对植物生长量和体内有效营养积累有一定的影响。研究结果表明 ,固氮细菌、解磷细菌、解钾细菌对玉米生长都能起到促进作用 ,都能提高玉米体内有效营养的积累量和N ,P ,K元素的释放 ,其中固氮细菌释放增长率为N =16 5% ,P =10 8% ,K=8 3% ,解磷细菌释放增长率为N =19 4% ,P =58 7% ,K =6 6 % ,解钾细菌释放增长率为N =13 0 % ,P =2 1 6 % ,K =2 1 6 %。解磷细菌效果最为明显 ,解钾细菌次之  相似文献   
14.
This study investigates the effect of conjoint use of bio-organics (biofertilizers + crop residues + FYM) and chemical fertilizers on yield, physical–chemical and microbial properties of soil in a ‘French bean–cauliflower’-based cropping system of mid hills of the north-western Himalayan Region (NWHR) of India. Conjoint bio-organics at varied levels of NPK chemical fertilizers increased yield of ‘cauliflower’ over corresponding single application. Incorporation of crop residues with 75% of the recommended NPK application resulted in the highest yield (19 t ha?1). Conjoint use of bio-organics produced a yield (15.65 t ha?1), which was statistically on a par with 75% of the recommended NPK application alone. This indicated a saving of 75% NPK chemical fertilizers. In the case of ‘French bean’, the effect was non-significant. The results also showed significant higher soil available N (351.3 kg ha?1) under 75% NPK + biofertilizers, whereas the highest soil available K (268.3 kg ha?1) was recorded under 75% NPK + crop residues. Lowest bulk density (1.03 Mg m?3), highest water holding capacity (36.5%), soil organic matter (10.6 g kg?1), bacterial (4.13 × 107 cfu g?1) and fungal (6.3 × 107 cfu g?1) counts were recorded under sole application of bio-organics. According to our study, we concluded that the combination of NPK fertilizers and bio-organics increased yield except French bean, soil available N, K and saved chemical fertilizers under ‘French bean–cauliflower’-based cropping system.  相似文献   
15.
Samples of upland-farm surface soils (0–10 em in depth) belonging to various great soil groups were collected in 28 upland sites in Thailand during the rainy season.

Among the microbes related to the transformation of nitrogen, namely ammonifiers, ammonia oxidizers, nitrite oxidizers and denitrifiers, the count of denitrifier showed the maximum value amounting to 104 to 105 per 1 g of dry soil, followed byammonifier. The population level of nitrogen-fixing blue green algae was unexpectedly high, being 103 to 101

The microbial counts in Brown Forest Soils, Rendzinas and Grumusols with high content of organic matter, available phosphorus and exchangeable potassium tended to be high.

Non-calcic Brown Soils, Reddish Brown Lateritic Soils, Alluvial Soils, Red-Yellow Podzolic Soils and Gray Podzolic Soils which lack in some nutrients showed intermediate levels of microbial populations, while the counts of nitrogen-fixing blue green algae in Alluvial Soils and those of denitrifier in Red-Yellow Podzolic Soils were markedly high. In the case of Low Humic Gley Soils and Regosols with low content of organic matter, available phosphorus and available potassium, the population of microbes was generally small.

The relationship between the organic matter content and the microbial population of soils was positively significant at 0.1 % level only in the case of fungal population (r=0.551), while the relationship between the available phosphorus content and the microbial population was positively significant at 0.1% level only in the case of Azotobacter (r=0.682).

The relationships between the total nitrogen, the exchangeable potassium, the amount of NH4+-N, the amount NO2 --N, or the amount of NH4 +-N+NO2 --N and each microbial population were not significant in any microbial groups.

The count of denitrifiers in upland farm soils of Thailand was 9 times as high as that in non-volcanic upland-farm soils of Japan and was 23 times higher than that in volcanic soils though large variations were seen among the great soil groups of Thailand. Conversely, the population of non-spore-forming nitrite oxidizers in the upland farm soils of Thailand was 1/100 that in non-volcanic soils of Japan and 1/280 that in volcanic soils. In the case of Azotobacter, the count in upland farm soils of Thailand averaged 2,800 per 1 g of dry soil. while that in non-volcanic upland farm soils of Japan was 77 on the average.

The ratio of aerobic bacteria to actinomycetes in upland farm soils of Thailand was 2.31, while that of non-volcanic soils of Japan was 7.28.  相似文献   
16.
桑树根际固氮细菌的分离鉴定及固氮酶活力测定   总被引:4,自引:1,他引:4  
利用固氮细菌可降低桑园化肥使用量和提高桑叶产量与品质。采用选择性培养基,从桑树根际分离获得24个具有固氮能力的细菌分离株,以rep-PCR基因指纹分析聚类为18个聚类群。经固氮酶活性测定,PA19、PA2和PK1菌株具有较强的固氮酶活性。利用菌落形态特征观察及16S rDNA碱基序列测定和同源性分析,对3株细菌进行鉴定的结果是:PA19菌株为中慢生根瘤菌属(Mesorhizobium sp.),PA2菌株为假单胞菌属(Pseudomonas sp.),PK1菌株为土壤杆菌属(Agrobacterium sp.)。  相似文献   
17.
秸杆覆盖对苹果园土壤固氮菌数量年变化的影响   总被引:1,自引:0,他引:1  
在整个果树生长期内,秸杆覆盖可明显增加各土层固氮菌的数量,20 cm土层中,年平均固氮菌数量增加123.80%;20- 40 cm土层中增加51.61%;40- 60 cm土层中增加103.85%。在 0-60cm果树的耕作层内固氮菌数量年平均增加95.47%,不同土层固氮菌数年变化曲线,无论覆盖与对照,均呈单峰曲线变化,高峰出现在9月。  相似文献   
18.
A long-term field experiment was conducted for 8 years on a Vertisol in central India to assess quantitatively the direct and residual N effects of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter in a soybean–wheat rotation. After cultivation of soybean each year, its aerial residues were removed before growing wheat in the same plots using four N levels (120, 90, 60 and 30 kg ha?1) and Azotobacter inoculation. Inoculation of soybean increased grain yield by 10.1% (180 kg ha?1), but the increase in wheat yields with inoculation was only marginal (5.6%; 278 kg ha?1). There was always a positive balance of soil N after soybean harvest; an average of +28 kg N ha?1 yr?1 in control (nodulated by native rhizobia) plots compared with +41 kg N ha?1 yr?1 in Rhizobium-inoculated plots. Residual and direct effects of Rhizobium and Azotobacter inoculants caused a fertilizer N credit of 30 kg ha?1 in wheat. Application of fertilizers or microbial inoculation favoured the proliferation of rhizobia in crop rhizosphere due to better plant growth. Additional N uptake by inoculation was 14.9 kg N ha?1 by soybean and 20.9 kg N ha?1 by wheat crop, and a gain of +38.0 kg N ha?1 yr?1 to the 0–15 cm soil layer was measured after harvest of wheat. So, total N contribution to crops and soil due to the inoculants was 73.8 kg N ha?1 yr?1 after one soybean–wheat rotation. There was a total N benefit of 13.8 kg N ha?1 yr?1 to the soil due to regular long-term use of microbial inoculants in soybean–wheat rotation.  相似文献   
19.
During the current investigation, 51 bacterial isolates/mutants of Azotobacter chroococcum, Azospirillum spp. and Gluconacetobacter diazotrophicus were tested for antifungal activity against three fungal pathogens, namely Rhizoctonia solani cotton, Rhizoctonia solani rice and Fusarium oxysporum tomato using a dual-culture technique under laboratory conditions. Ten isolates/mutants were found to be inhibitory against R. solani cotton, six against R. solani rice and twelve against F. oxysporum tomato. Nearly 50% of the isolates/mutants were siderophore positive. The antimicrobial substance was found to be extracellular and proteinaceous in nature, but in some strains it was found to be associated with other complex material also. Almost all the positive isolates/mutants showed production of antibiotic and antifungal compounds. On the basis of this study, in vitro results under laboratory conditions were reproduced in pot experiments in the greenhouse and chosen isolates/mutants of A. chroococcum were found to be effective biocontrol agents against R. solani cotton (disease index 16.7%) and R. solani rice (2.5%) in cotton crop, whereas in guar, the crop disease index was 2.5% against R. solani cotton, 13.3% against R. solani rice and 0% against F. oxysporum tomato in tomato crop compared with their respective checks.  相似文献   
20.
High nitrogen fixing and phytohormone producing diazotrophs such as Azotobacter were isolated, identified and used as bioinoculants on wheat and cotton with varying doses of nitrogen under field conditions. The impact of bio-inoculants was determined on the basis of their effect on yield, dry weight and survival rate of bacteria at different days of plant growth under field conditions in two consecutive seasons (2000–01 and 2001–02). Pronounced effects were seen by the use of bio-inoculants in wheat crop. The effects were more visible in the second year as the level of bio-inoculants was maintained in the soil. A net saving of 25–30?kg nitrogen was observed using chosen bio-inoculants for wheat crop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号