首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35638篇
  免费   1539篇
  国内免费   4183篇
林业   3328篇
农学   1831篇
基础科学   4783篇
  6313篇
综合类   17358篇
农作物   1294篇
水产渔业   688篇
畜牧兽医   3499篇
园艺   917篇
植物保护   1349篇
  2024年   595篇
  2023年   1609篇
  2022年   1897篇
  2021年   1852篇
  2020年   1602篇
  2019年   1805篇
  2018年   1093篇
  2017年   1529篇
  2016年   1854篇
  2015年   1823篇
  2014年   1900篇
  2013年   2017篇
  2012年   2154篇
  2011年   2098篇
  2010年   2025篇
  2009年   1850篇
  2008年   2096篇
  2007年   1633篇
  2006年   1264篇
  2005年   1233篇
  2004年   918篇
  2003年   883篇
  2002年   687篇
  2001年   598篇
  2000年   537篇
  1999年   438篇
  1998年   474篇
  1997年   429篇
  1996年   394篇
  1995年   402篇
  1994年   329篇
  1993年   283篇
  1992年   231篇
  1991年   270篇
  1990年   215篇
  1989年   175篇
  1988年   64篇
  1987年   36篇
  1986年   19篇
  1985年   18篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1975年   1篇
  1963年   2篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
基于鼹鼠多趾结构特征的仿生切土刀片设计与试验   总被引:3,自引:0,他引:3  
为降低土壤耕作阻力,分析了鼹鼠前肢手掌的多趾组合结构特征,得到鼹鼠多趾组合结构是一种多窄齿组合结构,且相邻齿间间距可调整,最终确定了多趾组合结构的数学模型。基于该模型,设计了具有仿生结构特征的切土刀片。通过土槽试验,采用四因素三水平的二次正交回归试验方法,分析仿生结构元素m和n、土壤含水率和切土倾角对水平阻力的影响,得到土壤含水率和切土倾角对水平阻力的影响更显著,最优仿生结构元素m为5、n为1.75。通过比较传统和仿生刀片在切土倾角10°~90°和土壤含水率10%~30%下的水平阻力,得到仿生几何结构对刀片切土的临界倾角无显著影响,但土壤含水率对其有显著影响:当土壤含水率为10%和20%时,临界倾角均为30°左右;当土壤含水率为30%时,临界倾角均在40°~50°之间。然而,仿生几何结构对刀片所受的水平阻力有显著影响,在相同的土壤含水率下,仿生刀片的水平阻力总小于传统刀片的水平阻力:当土壤含水率为10%、20%、30%时,仿生刀片的水平阻力分别减小11.48%~39.16%、17.81%~28.00%和11.19%~33.26%。此外,水平阻力的变化与土壤内聚力具有极大的相关性,研究表明土壤含水率为10%~20%时,仿生刀片具有更好的切土性能。  相似文献   
962.
NaCl溶液处理亚热带土壤水分特征曲线差异与模型优选   总被引:3,自引:0,他引:3  
胡传旺  王辉  武芸  卢佳宇  刘常 《农业机械学报》2018,49(4):290-296,329
携带大量盐分的低质水长期灌溉导致土壤存在极大的物理化学特性退化风险,为了探究盐分对土壤水分特征曲线影响的差异性,采用压力膜法对亚热带地区粘性潮土、沙性潮土、红壤、紫色土、水稻土等5种土壤进行室内测定,对比分析了各土壤在0、5、10、15 g/L等4个钠盐浓度水平下土壤水分特征曲线的差异,并利用RETC软件结合数理统计方法确定了各土壤不同钠盐浓度水平下相应的最优拟合模型。结果表明:钠盐处理均可提高各土壤的持水能力,且粘粒含量较高的土壤影响显著;钠盐处理减少了粘性潮土、沙性潮土和红壤的有效含水率,分别最大减少了40.8%、30.5%、31.5%,却提高了紫色土、水稻土有效含水率,分别最大提高了45.7%、28.9%。粘粒含量少或低浓度盐溶液处理的土壤水分特征曲线以BC模型拟合最优,而粘粒含量多且高浓度盐溶液处理的以DP-M模型拟合最优。  相似文献   
963.
基于全子集-分位数回归的土壤含盐量反演研究   总被引:2,自引:0,他引:2  
为提高植被覆盖条件下卫星遥感对土壤含盐量的估测精度,以河套灌区解放闸灌域为研究区,以高分一号卫星影像为数据源,同步采集不同深度土壤含盐量,通过全子集筛选法(Best subset selection)分析不同波段和光谱指数对于不同深度土壤含盐量的敏感性,并采用人工神经网络(Artificial neural network,ANN)、支持向量机(Support vector machine,SVM)和分位数回归(Quantile regression,QR) 3种方法,构建全子集筛选前后0~20 cm、20~40 cm、0~40 cm、40~60 cm、0~60 cm等不同深度下的土壤含盐量反演模型。结果表明,B4、BI、SI1、SI3是0~20 cm、0~40 cm处土壤含盐量的敏感变量组合,B4、BI、NDVI为20~40 cm、40~60 cm、0~60 cm处土壤含盐量的敏感变量组合;在各深度下,分位数回归模型的精度最高,模型的决定系数R2c1、R2v1均在0. 4以上,均方根误差RMSEc1、RMSEv1均小于0. 4%,SVM次之,ANN最差;在20~40 cm深度下QR反演模型效果优于其他深度,为本文土壤含盐量估算的最优模型,其建模和验证的决定系数R2c1、R2v1分别为0. 611和0. 671,建模和验证均方根误差RMSEc1、RMSEv1分别为0. 177%和0. 160%。本研究可为卫星遥感大范围监测植被覆盖条件下土壤盐渍化程度提供参考。  相似文献   
964.
为了开展大范围的冬小麦干旱预警,以中国北方冬小麦区为实例,构建了土壤水分动态预报模型,结合未来10 d高精度天气要素预报、土壤自动水分观测和冬小麦发育期观测数据,建立了北方冬小麦区干旱预警系统。利用该系统对2018年4—5月进行逐日的冬小麦干旱预警,对干旱预警产品的分析表明:系统对未来10 d土壤相对湿度预报的决定系数在0. 63~0. 91之间,均方根误差在5. 6%~18. 2%之间,预报时效越近,准确率越高。从不同的干旱等级预测准确率看,对于干旱等级较高的重旱和特旱预报准确率较高,轻旱和中旱的预报准确率略低。该系统基本满足冬小麦干旱预警需求,对国家级农业气象部门大范围农业干旱监测和预警业务是有益的补充。  相似文献   
965.
基于MCR-ANN-CA模型的包头市生态用地演变模拟   总被引:1,自引:0,他引:1  
以内蒙古自治区包头市为研究区,耦合最小累积阻力(MCR)模型、人工神经网络(ANN)和元胞自动机(CA)构建MCR-ANN-CA模型。利用MCR模型量化包头市各用地类型演变为生态用地时的阻力,构建CA适宜性规则;利用ANN模型提取CA邻域转换规则,基于包头市2006、2011年土地利用数据及归一化植被指数(NDVI)、高程、坡度、水体距离、人口密度多项数据,对2016年生态用地演变情景进行模拟,以2016年实际生态用地分布为参照,将该模型模拟结果与CA-Markov模型的模拟结果进行对比(以2016年实际景观分布为参照),结果显示,两种模型模拟结果的卡帕一致性指数(Kappa index of agreement,KIA)分别为0. 89和0. 87,相对误差分别为3. 10%和5. 31%,MCR-ANN-CA模型显示了较高的模拟精度。  相似文献   
966.
基于圆柱面模型的仿形喷雾植物冠层密度超声量化测试   总被引:2,自引:0,他引:2  
基于低成本超声波传感器搭建了一套植物冠层超声回波信号检测系统,建立了基于圆柱面叶片分布模型的量化测试台。在正交中心复合设计试验基础上,建立了超声回波信号均值与冠层密度、探测距离的定量关系,即植物冠层密度量化模型。对已建立的植物冠层密度量化模型进行方差分析,结果表明,植物冠层密度量化模型具有显著性,且失拟性不显著。植物冠层密度量化模型决定系数R2和预测模型决定系数R2分别为0. 988 5和0. 911 4,表明试验值和预测值具有良好的一致性。为了验证已建立的植物冠层量化模型的可靠性,于室内测试台进行了4种植物在3种不同测试距离下的冠层密度验证测试,试验结果表明,实测值与模型测量值的相对误差最小为1. 230%,最大为13. 650%,平均相对误差为6. 120%,植物冠层密度量化模型对室内测试台的冠层密度测量有较好适用性。室外选择3棵不同的桂树,每棵树选择9个测试点进行验证测试,试验结果表明,实测密度与模型测量密度的最小相对误差为3. 959%,最大相对误差为20. 600%; 3棵桂树的实测密度与模型测量密度的平均相对误差分别为11. 244%、12. 246%和9. 628%,植物冠层密度量化模型对户外桂树密度测量有较好的适用性。  相似文献   
967.
基于小波变换和BP神经网络的水稻冠层重金属含量反演   总被引:1,自引:0,他引:1  
自然农田生态系统中,农作物的各种生化参数受重金属污染胁迫后虽表现异常,但其特征往往极为微弱,极不稳定。利用处理非稳定信号方法中常用的信号处理方法——小波分析法(Db-5),对水稻的光谱反射率数据进行处理,有效提取光谱信号中受重金属污染胁迫而潜藏的一些"突变"弱信息。利用Db-5小波基进行小波变换,从中选取具有异常光谱特征的奇异点,利用奇异点对应波段(716、745、766 nm)的光谱反射率构建反向传播(BP)神经网络模型,对水稻冠层4种重金属含量进行反演。将利用模型得到的预测值与实测值进行相关性分析,结果表明,基于BP神经网络的水稻冠层重金属含量反演模型对于实验区镉、铅、汞、砷4种重金属胁迫,具有良好的反演效果。  相似文献   
968.
水肥气一体化灌溉对温室辣椒地土壤N2O排放的影响   总被引:1,自引:0,他引:1  
采用水肥气一体化灌溉可改善土壤的通气状况,影响土壤碳氮循环过程,进而影响土壤N_2O的排放。为明确施氮、增氧和灌水对温室辣椒地土壤N_2O排放的影响,设置了施氮量(300、225 kg/hm~2)、溶氧量(40、5 mg/L)和灌水量(1. 0W、0. 6W,W为充分灌溉时的灌水量) 3因素2水平试验,采用静态箱-气相色谱法监测N_2O排放通量,系统研究了水肥气一体化灌溉对温室辣椒地土壤N_2O排放的影响,并通过结构方程模型分析各影响因子对N_2O排放的定量贡献。结果表明,增氧处理、施氮量和灌水量的增加可增加温室辣椒地土壤N_2O的排放通量峰值、排放总量和单产排放量。试验中增氧条件下N_2O排放总量较对照增加了31. 90%;充分灌溉较非充分灌溉增加了43. 22%;常量施氮较减量施氮增加了33. 01%。增氧处理和灌水量的增加可提高温室辣椒的氮素利用效率,而施氮量的增加降低了温室辣椒的氮素利用效率。综合考虑作物产量、氮素利用效率和单产N_2O排放量,减量施氮非充分灌溉增氧处理是推荐的水肥气管理方案。通过结构方程模型的路径分析,土壤温度、充水孔隙度和NO3--N含量可分别解释N_2O排放的42%、60%和58%,是影响水肥气一体化灌溉的主要影响因子。  相似文献   
969.
基于作物生长监测诊断仪的玉米LAI监测模型研究   总被引:1,自引:0,他引:1  
为探索作物生长监测诊断仪(CGMD-402型)在作物长势监测应用中的精准性与适用性,连续2年在不同氮肥水平下进行不同玉米品种的实验。使用作物生长监测诊断仪采集冠层归一化差值植被指数(Normalized differential vegetation index,NDVI)、比值植被指数(Ratio vegetation index,RVI),并同步以ASD FR-2500型野外高光谱辐射测量仪获取冠层光谱反射率,构建NDVI、RVI高光谱植被指数;通过对比两种仪器获取的植被指数特征及其定量关系,评价CGMD-402型作物生长监测诊断仪监测精度;基于CGMD-402型作物生长监测诊断仪获取的NDVI、RVI,建立叶面积指数(Leaf area index,LAI)监测模型,并对模型监测精度进行验证。结果表明:玉米冠层NDVI、RVI随施氮量增加而增加,增加幅度分别为8.20%~36.59%、4.40%~25.16%;CGMD-402型作物生长监测诊断仪与ASD FR-2500型野外高光谱辐射测量仪获取的NDVI、RVI相关系数分别为0.991、0.985,决定系数分别为0.983、0.969,说明CGMD-402型作物生长监测诊断仪具有较高的监测精度,可替代ASD FR-2500型野外高光谱辐射测量仪获取NDVI、RVI指数;利用CGMD-402型作物生长监测诊断仪获取NDVI、RVI,建立LAI监测模型的决定系数分别为0.911、0.898;以独立数据对模型精度进行验证,模型预测值与田间实测值间决定系数分别为0.963、0.954,相对误差分别为6.65%、9.37%,表明二者具有高度一致性。研究表明,利用作物生长监测诊断仪能有效监测玉米不同品种LAI动态变化,可以替代AccuPARLP-80型植物冠层分析仪获取玉米LAI数据。  相似文献   
970.
以黄淮平原种植区为研究对象,综合种植区的自然地理、生态环境和农业发展状况等因素,借助层次分析和模糊数学方法,建立了黄淮平原灌水技术选择模型。利用单因素、多因素法提出了节水灌溉技术选择的方法,优选出最适宜灌溉技术。在喷灌、滴灌、微喷灌、低压管灌和畦灌5种方案中,运用所建立模型选择最优的灌水技术,综合因子大小为微喷灌>喷灌>低压管灌>滴灌>畦灌。黄淮平原种植区适宜灌溉技术为微喷带灌溉技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号