首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   41篇
  国内免费   72篇
林业   35篇
农学   73篇
基础科学   2篇
  53篇
综合类   309篇
农作物   44篇
水产渔业   40篇
畜牧兽医   198篇
园艺   33篇
植物保护   8篇
  2024年   9篇
  2023年   38篇
  2022年   47篇
  2021年   48篇
  2020年   47篇
  2019年   54篇
  2018年   26篇
  2017年   39篇
  2016年   42篇
  2015年   36篇
  2014年   49篇
  2013年   43篇
  2012年   45篇
  2011年   52篇
  2010年   42篇
  2009年   38篇
  2008年   36篇
  2007年   30篇
  2006年   11篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1997年   2篇
  1994年   1篇
  1990年   3篇
  1989年   2篇
  1980年   1篇
排序方式: 共有795条查询结果,搜索用时 22 毫秒
111.
以二倍体和四倍体泥鳅为研究对象,采用甲基化修饰依赖性内切酶测序技术(MethylRAD-Seq)在全基因组水平上分析泥鳅的DNA甲基化特点及倍性间的DNA甲基化变异。测序结果共得到302 111 684条Methyl-RAD序列标签。与参考基因组比对结果显示,泥鳅的甲基化位点主要分布在基因体区(gene body),其次为内含子区(intron)和基因间区(intergenic),而在其他功能元件上的分布较少。四倍体泥鳅的整体甲基化水平比二倍体高,尤其是在第一外显子区(1st Exon)和转录起始位点上游1 500bp至200bp区(TSS1500),且倍性间差异极显著(P0.01)。但在启动子区,四倍体泥鳅的甲基化水平略低于二倍体。在二倍体和四倍体泥鳅间共筛选到1 268个差异甲基化CmCGG位点和14个差异甲基化CmCWGG位点,这些位点主要分布于内含子、基因体和基因间区。比较各基因的甲基化水平,共得到684个倍性间差异甲基化基因。KEGG分析结果显示,倍性间差异甲基化基因主要富集到与生长发育、免疫及错配修复等相关通路上。  相似文献   
112.
采用0、100、200、400μmol/L不同浓度的姜黄素对菊花神马组培苗进行处理,利用甲基化敏感扩增多态性技术(MSAP)分析DNA甲基化水平,并观察植株生长状况。结果表明:姜黄素处理对菊花花期的影响达到了显著水平,以200μmol/L姜黄素处理的菊花最早开花,花期可提前5~8 d。MSAP分析结果表明,经姜黄素处理的菊花组培苗的DNA甲基化比率随姜黄素浓度的升高而降低,在0、100、200、400μmol/L姜黄素处理下,甲基化比率分别为58.40%、50.44%、48.24%和46.00%。经姜黄素处理的菊花组培苗矮化萎蔫,叶片数减少,分芽能力减弱。移植至室外后,植株矮化等表型抑制作用稳定遗传。表明姜黄素处理菊花可使其基因组甲基化水平降低,产生表观遗传变异,导致提前开花。  相似文献   
113.
采用RT–PCR技术扩增和克隆鸭Myo G基因启动子,并对其启动子序列进行生物信息学分析,采用Sequenom Mass Array技术检测Cp G岛在鸭肌肉组织中的甲基化水平,用q RT–PCR检测Myo G基因的表达量。结果表明,扩增得到鸭Myo G基因启动子序列2 730 bp,对启动子序列预测后,发现存在2个Cp G岛,其中Cp G岛(–2 536~–1 997 bp)存在5个转录因子结合位点和多个真核生物结构元件。甲基化检测结果表明:在鸭的个体和组织水平上,启动子甲基化率均未聚类在一起;Cp G位点甲基化频率存在个体差异,22%Cp G位点的甲基化频率与Myo G的m RNA表达量呈负相关(P0.05),78%Cp G位点的甲基化频率呈正相关(P0.05),其中,腿肌甲基化位点Cp G_1、Cp G_26.27.28.29的甲基化频率与Myo G基因表达水平均呈显著相关(P0.05)。Myo G基因在鸭与在哺乳动物中的转录调控机制存在差异。试验中发现多个影响鸭Myo G基因转录的潜在甲基化位点,其中Cp G_1与Cp G_26.27.28.29能通过DNA甲基化修饰影响Myo G基因在鸭腿肌中的转录。本研究结果可为鸭Myo G基因转录调控提供参考依据。  相似文献   
114.
《中国兽医学报》2017,(11):2222-2226
对藏猪睾丸组织基因组DNA甲基化水平与Dnmt3a、HIF2α基因mRNA表达水平的相关性进行研究。以大约克猪为对照,采用荧光法测定藏猪睾丸组织基因组DNA甲基化水平,采用实时荧光定量PCR技术测定DNA甲基化转移酶3a(Dnmt3a)与低氧诱导因子2α(HIF2α)的基因在藏猪睾丸组织中mRNA表达水平。结果显示:藏猪睾丸基因组DNA甲基化水平(0.392 9±0.099 2)%显著低于大约克猪睾丸基因组DNA甲基化水平(0.901 7±0.146 7)%(P<0.05);藏猪睾丸组织中Dnmt3a基因mRNA相对表达量(0.071 6±0.036 6)%显著低于大约克猪睾丸组织中Dnmt3a基因mRNA相对表达量(0.987 8±0.137 0)%(P<0.05);藏猪HIF2α基因mRNA相对表达量(0.158 8±0.066 1)%也显著低于大约克猪HIF2α基因mRNA相对表达量(1.2930±0.0756)%(P<0.05)。通过对藏猪睾丸基因组DNA甲基化水平与该组织中Dnmt3a和HIF2α基因mRNA表达量进行相关性分析,发现存在线性正相关,R2值分别达到0.846 3和0.917 4,这将为藏猪睾丸低氧适应性的DNA甲基化机制及藏猪的分子育种等相关研究奠定基础。  相似文献   
115.
DNA甲基化作为重要的表观遗传修饰,主要发生在CpG岛,通过DNA甲基化转移酶催化完成。DNA甲基化调控基因表达,在细胞分化、遗传印记和肿瘤的治疗等方面起着重要作用。论文概述了DNA甲基化基本概念,总结了DNA甲基化在生长抑制中的作用机制,包括降低生长相关激素的表达,阻滞细胞周期的进程,诱导细胞凋亡,阻止血管生成及抑制或激活DNA甲基化转移酶的表达和活性,展望了DNA甲基化在揭示人类疾病机制,促生长药物和抗癌药物的研发等方面的发展前景。  相似文献   
116.
本试验旨在研究蛋氨酸缺乏对蛋鸡产蛋后期生产性能、血清游离氨基酸含量和肝脏蛋氨酸代谢相关酶基因表达的影响。选取180只62周龄的海兰灰蛋鸡,根据产蛋率均匀分成3组(每组6个重复,每个重复10只):对照组饲喂蛋氨酸水平为0.33%的饲粮,蛋氨酸缺乏组分别饲喂蛋氨酸水平为0.21%和0.27%的饲粮,试验期90d。结果表明:1)饲粮蛋氨酸缺乏显著降低了蛋鸡的平均日采食量、产蛋率、平均日产蛋重、平均蛋重和不合格蛋率(P0.05),显著提高了料蛋比(P0.05)。2)蛋氨酸缺乏显著降低蛋鸡血清中蛋氨酸的含量(P0.05)。0.21%蛋氨酸组蛋鸡血清中丝氨酸、甘氨酸和丙氨酸的含量显著高于其他2组(P0.05)。0.27%蛋氨酸组蛋鸡血清中缬氨酸、异亮氨酸和精氨酸的含量显著低于对照组(P0.05),脯氨酸的含量显著低于0.21%蛋氨酸组(P0.05)。3)与对照组相比,0.21%蛋氨酸组蛋鸡肝脏中DNA甲基转移酶1、N6-甲基腺苷(m6 A)甲基转移酶3(METTL3)和m6 A甲基转移酶14的表达量显著提高(P0.05),0.27%蛋氨酸组蛋鸡肝脏中METTL3的表达量显著提高(P0.05)。4)与对照组相比,0.21%蛋氨酸组蛋鸡肝脏中甲硫氨酸腺苷转移酶1a、5-甲基四氢叶酸-同型半胱氨酸甲基转移酶(MTR)和胱硫醚-β-合成酶的表达量显著提高(P0.05),0.27%蛋氨酸组蛋鸡肝脏中MTR的表达量显著提高(P0.05)。蛋氨酸缺乏对蛋鸡肝脏甲硫氨酸腺苷高半胱氨酸酶和甜菜碱高半胱氨酸甲基转移酶的表达量无显著影响(P0.05)。由以上结果可知:蛋鸡饲粮高水平的蛋氨酸缺乏会降低蛋鸡的生产性能,可能与蛋氨酸缺乏改变蛋氨酸代谢途径,影响DNA和RNA的甲基化过程有关。  相似文献   
117.
为明确入侵植物黄顶菊Flaveria bidentis生长发育与DNA甲基化之间的相互关系,采用甲基化敏感扩增多态性(methylation sensitive amplification polymorphism,MSAP)方法研究了黄顶菊种子萌发过程中DNA甲基化的动态变化。结果表明,DNA甲基化与去甲基化两者共同调控黄顶菊生命初期的生长发育,且去甲基化的变化在种子萌发过程中占主导。筛选出的12对引物共扩增出998条MSAP条带,其中多态性条带为951条,多态性百分比为95.37%。黄顶菊种子萌发过程中胞嘧啶发生甲基化主要以双链甲基化形式为主,位点数为94个,而单链甲基化位点数仅为50个;多态性位点数占总位点数比率为48.95%,表明有近一半的位点发生了DNA甲基化和去甲基化的变化;发生去甲基化变化的多态性片段有73个,而发生甲基化变化的有21个,说明黄顶菊种子萌发阶段DNA甲基化的变化主要以去甲基化形式为主,且在萌发第4天后去甲基化数目持续快速上升。  相似文献   
118.
In order to investigate DNA methylation and expression levels of myostatin (MSTN) gene in mscule and fat, 5 months of age of Bashiby sheep were selected, the promoter region and exon 1 methylation levels of MSTN gene was analyzed using bisulfite sequencing PCR (BSP). Real-time PCR was used to detect the expression level of MSTN gene in biceps femoris, femoral triceps, semitendinosus, semimembranosus, longissimus dorsi muscle and tail fat of Bashiby sheep. The results showed that the methylation probability of muscle was higher than fat, the methylation probability of biceps femoris, femoral triceps, semitendinosus, semimembranosus, longissimus dorsi muscle and tail fat were 74.2%, 74.2%, 83.2%, 83.7%, 82.1% and 25.3%, respectively. The expression levels of MSTN gene in biceps femoris, femoral triceps, semitendinosus, semimembranosus, longissimus dorsi muscle were significantly lower than tail fat in Bashiby sheep (P < 0.05), but there were no significant difference among biceps femoris, femoral triceps, semitendinosus, semimembranosus and longissimus dorsi muscle (P > 0.05).The DNA methylation was negatively correlated with the expression levels in muscle and fat of Bashiby sheep (r=-0.886, P < 0.05).  相似文献   
119.
哺乳动物生殖细胞和胚胎冷冻保存在辅助生殖技术中得到了广泛的应用,同时在保存物种的多样性方面发挥着巨大的作用。但是,冷冻引起的DNA甲基化对其印记基因缺陷性疾病的发生和后代生理功能的差异会有很大的影响。作者就冷冻保存技术对配子(精子和卵子)和胚胎的DNA甲基化的影响以及冷冻引起的DNA甲基化对后代的影响进行了综述,以期对配子的冷冻保存和辅助生殖技术的发展提供参考。  相似文献   
120.
【目的】甲基化和去甲基化协同调控的DNA甲基化直接影响逆境胁迫相关基因的表达,植物的DNA去甲基化主要由去甲基化酶基因Ros1(Repressor of Silencing 1)介导的碱基切除修复实现。开展盐穗木(Halostachys caspica)DNA甲基化程度与HcRos1表达动态变化的分析,有助于阐明DNA甲基化应答盐胁迫的分子机制。【方法】利用qRT-PCR测定盐胁迫下盐穗木幼苗同化枝和根基因组DNA的甲基化程度,探讨DNA的甲基化程度与去甲基化酶基因HcRos1表达的相关性。【结果】在相同NaCl浓度胁迫不同时间下盐穗木同化枝和根中DNA甲基化程度呈现先升高后降低的趋势,盐穗木同化枝中的DNA甲基化程度大多高于根中的基因组甲基化程度,且均在24 h达到最高DNA甲基化程度。而在不同浓度NaCl胁迫处理24 h时,盐穗木同化枝和根中DNA甲基化程度也是先升高后降低的趋势,盐穗木同化枝中的基因组甲基化程度高于根中的基因组甲基化程度,且多在100 mmol/L达到最高DNA甲基化程度。HcRos1的基因表达量在低浓度NaCl胁迫下变化不大,但在700 mmol/L NaCl胁迫72 h时则显著升高。【结论】HcRos1表达量与DNA甲基化水平呈明显的负相关,盐胁迫能够提高HcRos1的表达,降低基因组DNA的甲基化程度,增强植物的耐盐性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号