首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29318篇
  免费   1391篇
  国内免费   3907篇
林业   3057篇
农学   1086篇
基础科学   4314篇
  6084篇
综合类   14751篇
农作物   737篇
水产渔业   604篇
畜牧兽医   2359篇
园艺   394篇
植物保护   1230篇
  2024年   585篇
  2023年   1505篇
  2022年   1908篇
  2021年   1825篇
  2020年   1470篇
  2019年   1622篇
  2018年   998篇
  2017年   1395篇
  2016年   1680篇
  2015年   1626篇
  2014年   1621篇
  2013年   1693篇
  2012年   1809篇
  2011年   1722篇
  2010年   1681篇
  2009年   1524篇
  2008年   1597篇
  2007年   1255篇
  2006年   970篇
  2005年   874篇
  2004年   684篇
  2003年   577篇
  2002年   436篇
  2001年   385篇
  2000年   352篇
  1999年   318篇
  1998年   356篇
  1997年   320篇
  1996年   296篇
  1995年   296篇
  1994年   247篇
  1993年   213篇
  1992年   171篇
  1991年   208篇
  1990年   172篇
  1989年   122篇
  1988年   47篇
  1987年   30篇
  1986年   9篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1975年   1篇
  1963年   2篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
831.
近红外光谱变量筛选提高西瓜糖度预测模型精度   总被引:3,自引:2,他引:3  
水果的内部品质是水果分级、保鲜及存储的一项重要指标,利用近红外光谱技术对西瓜内部品质进行快速无损检测研究有着非常重要的意义。为了研究变量筛选方法对西瓜糖度预测模型精度的影响,该文以麒麟瓜为研究对象,利用近红外漫透射光谱技术对麒麟瓜可溶性固形物含量(SSC)进行检测,采用偏最小二乘回归(PLSR),多元线性回归(MLR)和主成分回归(PCR)建立麒麟瓜可溶性固形物数学模型,并探讨等间隔平均光谱和等间隔抽取光谱变量筛选结合连续投影算法(SPA)对预测模型精度的影响。研究结果表明:光谱经等间隔抽取(间隔5,115个变量)经归一化预处理,结合SPA优选出6个波长建立的PLSR预测模型的相关系数(rpre)为0.828、校正均方根误差(RMSEC)为0.589、预测均方根误差(RMSEP)为0.611。该模型预测效果相对较优,建模时间短,提高了模型的预测能力和预测精度。该研究为西瓜内部品质的在线无损检测提供研究基础。  相似文献   
832.
基于改进生态足迹模型的市域主体功能区划   总被引:3,自引:2,他引:3  
市域主体功能区的合理划分,有利于市域主体经济的形成和社会经济的可持续发展。生态足迹模型是一种评价人类对资源环境开发利用影响程度和区域可持续发展程度的方法。该文以改进的生态足迹模型作为市域主体功能区划的技术方法,设计主体功能区划评价指标体系,与GIS的空间分析功能相耦合,对以县为评价对象的评价单元进行赋值、加权求和测算主体功能指数,确定开发与保护的阈值,并与建设用地适宜性评价、自然保护区等叠置分析,修正主体功能区的空间布局。结果表明:1)生态压力和开发潜力有明显的空间分布规律,除长清区外,市区其他区域生态压力大,开发潜力小;商河县、章丘市开发潜力大,生态压力较小。2)各评价单元主体功能指数界限明显,以此作为除禁止开发区外的主体功能区初步划分的依据。3)将主体功能初划结果与济南市建设用地适宜性评价、自然保护区、重要生态功能区进行叠置分析,修正功能区初划结果,商河县由重点开发区调整为限制开发区。生态足迹法和地理信息系统空间分析功能耦合的技术方法在市域主体功能区划中取得较好应用。  相似文献   
833.
基于地形校正的植被净初级生产力遥感模拟及分析   总被引:1,自引:1,他引:1  
植被净初级生产力(NPP)模拟研究对碳平衡监测及深入理解碳循环具有重要意义。高空间分辨率、短重访周期的遥感数据和地形校正成为精准模拟山区植被NPP研究的必然选择。在利用DEM数据对太阳总辐射和气温进行地形校正的基础上,估算了研究区植被吸收光合有效辐射因子、温度胁迫因子、水分胁迫因子和典型植被类型的最大光能利用率,构建了改进的CASABTC估算模型,利用HJ-1CCD数据模拟了2009年大别山区植被的NPP,并探讨了其时空变化特征。结果表明:1)由该文模拟值与MOD17A3的精度验证结果分析,基于地形校正的CASABTC模型和HJ-1数据适合精确模拟山区植被的NPP;研究区NPP在冬季比在春、秋、夏季受地形起伏的影响大。2)该文模拟的年NPP平均值为413.7 g/(m2·a)比MOD17A3平均值偏小4.9%,在空间分布上前者更加详细,地表特征更明显。3)研究区2009年NPP模拟值范围为0~1143.6 g/(m2·a),研究区总面积66.1%的NPP值在200~600 g/(m2·a)之间;年总NPP为9.891×106t,约占全国年总NPP的3.2‰,整体上呈现高、低值区交错分布的不规则特点。4)月NPP值随季节而变化,所有植被类型的NPP季节变化曲线都呈典型的单峰分布,且不同植被类型NPP的季节变化幅度有差别。月NPP值的季节变化与气温、太阳总辐射及NDVI的季节变化基本吻合,而降水量年内分配不均与NPP无相关性特点。5)各植被类型的月NPP和总NPP随海拔高度上升而逐渐变大,对于后者当海拔高度上升至1100 m时达到最大值,继续上升,其保持在600 g/m2左右不变。该研究可为后续基于HJ-1数据的山区植被NPP模拟提供参考。  相似文献   
834.
近红外光谱结合偏最小二乘法快速评估土壤质量   总被引:9,自引:0,他引:9  
以长江中下游粮食主产区水稻土为研究对象,采集17种不同施肥处理下共136个土壤样品在350 ~2 500 nm范围的近红外光谱,利用偏最小二乘回归分析结合交叉验证法建立了近红外漫反射光谱与传统化学分析方法测得的全碳、全氮、碳氮比、速效钾、速效磷、电导率、土壤pH等土壤指标之间的定量分析模型。模型的决定系数(R2)以及化学分析值标准差(SD)与模型的内部交叉验证均方差(RMSECV)的比值RSC用于判定建立的模型的好坏。结果表明:全碳、全氮、碳氮比和pH模型的R2和RSC分别为:R2=0.94,RSC=4.31;R2=0.95,RSC=4.35;R2=0.97,RSC=5.60;R2=0.92,RSC=3.37,说明上述土壤指标的预测结果很好。速效钾模型的R2和RSC分别为:R2=0.87,RSC=2.23,表明预测结果尚好。而速效磷和电导率模型的R2和RSC分别为:R2=0.18,RSC=1.16;R2=0.37,RSC=1.31,说明两者的预测结果均很不理想。综上所述,水稻土的土壤质量相关指标(全碳、全氮、碳氮比、速效钾和土壤pH)可以通过近红外光谱结合偏最小二乘法(NIR-PLS)快速评估。  相似文献   
835.
基于PSR模型的七里海湿地生态脆弱性评价研究   总被引:2,自引:0,他引:2  
利用"3S"技术,结合景观生态学、生态健康学及水文地质学理论,选用压力—状态—响应评价模型,选取人口密度、人类干扰指数、初级生产力、分维数、破碎度、斑块形状指数、湿地弹性度指数、湿地服务功能、湿地变化面积等9个评价指标,以200 m×200 m栅格点状单元为基本单元,分析评价七里海湿地的生态环境脆弱性状况。研究结果为:七里海湿地中度脆弱区面积最大,约为28.85 km2,占湿地总面积的30.37%;其次是一般脆弱区,面积约为21.68 km2,占22.82%;再次是重度脆弱区,面积约为20.17 km2,占21.23%;最后是轻度脆弱区和潜在脆弱区,面积分别为16.36 km2和7.94 km2,占17.22%和8.36%。  相似文献   
836.
基于压力-状态-响应(PSR)概念模型,结合层次分析法并采用综合评价模型对艾比湖流域生态安全进行综合评价。研究结果表明:(1)在13项评价指标中,影响流域生态安全的主导因素为森林覆盖率、草地面积和水土流失治理面积,其所占权重均在0.1以上;(2)自2000-2010年以来,艾比湖流域生态安全指数由0.2309增加至0.7556,流域生态环境呈现良性发展趋势,生态安全状况有所好转。当地政府通过提高森林覆盖率、增加草地面积以及治理水土流失等措施,不断改善了该流域的自然生态环境。  相似文献   
837.
基于近红外光谱技术的茶油原产地快速鉴别   总被引:2,自引:3,他引:2  
为研究茶油原产地溯源问题,维护其市场秩序,促进公平竞争。该文利用近红外光谱技术采集湖南、江西、安徽和浙江4个不同产地茶油的光谱数据,并运用 Savitzky-Golay 平滑(savitzky-golay, SG)、多元散射校正(multiplicative scatter correction, MSC)、一阶导数(first derivation, FD)和矢量归一化(vector normalization, VN)等4种方法对其进行预处理。采用偏最小二乘法(partial least squares, PLS)提取最佳主成分,构建 PLS 回归模型;同时,采用主成分分析(principal component analysis, PCA)和 PLS 算法提取最佳主成分,作为 BP 人工神经网络(BP artificial neural network, BPANN)输入变量,构建 PCA-BPANN 和 PLS-BPANN 模型。以验证集相关系数 RP 和验证集均方根误差 RMSEP 为模型的评价指标,分别优选最佳 PLS 和 BPANN 模型。试验结果表明,SG-PLS-DA 和 SG-PLS-BPANN-DA 模型对未知样本的整体分类准确率均大于90%。其中,SG-PLS-BPANN-DA 的鉴别效果优于前者,其建模集相关系数 RC、均方根误差 RMSEC 分别为0.974、0.170,验证集相关系数 RP、均方根误差 RMSEP 分别为0.972、0.172,对上述两类样本集的总体分类准确率分别为98.15%、95.83%,该模型能较准确鉴别茶油原产地。研究结果可为快速辨别茶油原产地提供参考。  相似文献   
838.
河北平原中低产区小麦与玉米生产现状及增产潜力分析   总被引:3,自引:2,他引:3  
本文基于2000—2013年MODIS/NDVI遥感信息与主要粮食作物的统计数据,分析了河北平原中低产区冬小麦和玉米生产的时空格局,并利用各县粮食作物主要生育期累积NDVI的逐年值、14年的最大值及单产统计数据,采用最小二乘法原理,进行数值曲线拟合,构建了单产遥感估测模型,估算了河北平原中低产区冬小麦和玉米的增产潜力。结果表明:1)冬小麦在邯郸和衡水的最大生产力水平较高,在沧州、廊坊及邢台中部的最大生产力水平较低,即后者挖掘增产潜力之后也很难达到前者的最大生产力水平;玉米的最大生产力水平普遍较高,挖掘增产潜力后均可达到较高的生产力水平。2)冬小麦和玉米总产增产潜力在沧州和邯郸较大;冬小麦单产增产潜力多低于10%,平均增产356 kg?hm?2(5.87%);玉米单产增产潜力多高于10%,平均增产798 kg?hm?2(12.33%);单产增产潜力区域分布不同,冬小麦为廊坊保定沧州邯郸邢台衡水,玉米为邢台邯郸保定沧州衡水廊坊。3)以河北平原近14年来作物累积NDVI的最大值估算的全区冬小麦增产潜力为3.90亿kg,玉米增产潜力为9.62亿kg,二者合计可增产13.52亿kg,约相当于区域冬小麦和玉米理论可达增产潜力的1/5。本文估测粮食作物增产潜力的方法可以应用于估测多尺度范围、不同作物的增产潜力,研究结果可为相关部门的决策和管理提供依据。  相似文献   
839.
为量化考察油料一维压榨过程中油脂的流动状态,针对直筒式冷态压榨制油过程,通过简化假设建立了一维压榨模型,并对油料微元进行受力分析;利用Darcy渗流定律与Terzaghi固结理论建立了油料压榨过程中的渗流模型,确定了影响压榨出油效果的因素主要为料筒内径、物料层高度、压榨压力、压榨时间、油脂黏度和物料孔隙度。在实际压榨过程中,压榨压力和压榨时间易控制,油脂黏度和孔隙度也可以通过设置压榨参数而改变,而压榨机的料筒规格不易改变,因此料筒半径的选取尤为重要。基于此,根据渗流模型推导出油率模型,分析了料筒半径对出油率的影响关系,指出料筒内径不宜过大。开展不同筒径时的出油率试验,并与模型预测值对照,其最大误差为2.10%。研究结果为油料直筒式低温预榨制油设备制造及工艺参数的优化及选取提供了参考。  相似文献   
840.
水稻秧盘育秧播种机气动式自动供盘装置设计与试验   总被引:2,自引:0,他引:2  
为减轻工人劳动强度,提高水稻秧盘育秧播种机的生产效率,研制了一种气动式自动供盘装置。通过建立秧盘输送模型确定了输送机构的输送过程和速度关系,根据秧盘外形特征和自动供盘装置工作原理,研制了气动式落盘机构及控制系统,由接近开关对秧盘进行检测,利用落盘机构快速升、放秧盘,实现秧盘的自动供送。为研究生产率、放盘时间和叠盘偏差对自动供盘装置性能的影响,以供盘合格率为指标进行了自动供盘正交试验。试验结果表明,叠盘偏差对供盘合格率的影响最显著,放盘时间对供盘合格率有一定影响,生产率对供盘合格率的影响不明显;当生产率为600~1 000盘/h、叠盘偏差为0~6 mm、放盘时间为0.8 s时,供盘合格率为98.67%~100%,试验结果满足水稻秧盘育秧播种机育秧技术使用要求。该研究对提高水稻秧盘育秧播种机的自动化程度具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号