首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8878篇
  免费   314篇
  国内免费   861篇
林业   137篇
农学   822篇
基础科学   21篇
  541篇
综合类   3811篇
农作物   466篇
水产渔业   419篇
畜牧兽医   3286篇
园艺   375篇
植物保护   175篇
  2024年   60篇
  2023年   205篇
  2022年   243篇
  2021年   286篇
  2020年   231篇
  2019年   346篇
  2018年   186篇
  2017年   286篇
  2016年   397篇
  2015年   433篇
  2014年   479篇
  2013年   493篇
  2012年   672篇
  2011年   713篇
  2010年   685篇
  2009年   742篇
  2008年   805篇
  2007年   599篇
  2006年   443篇
  2005年   409篇
  2004年   305篇
  2003年   240篇
  2002年   163篇
  2001年   157篇
  2000年   108篇
  1999年   81篇
  1998年   64篇
  1997年   55篇
  1996年   35篇
  1995年   39篇
  1994年   20篇
  1993年   5篇
  1992年   19篇
  1991年   19篇
  1990年   11篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1985年   1篇
  1981年   1篇
  1963年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
在当前智慧农业的大环境下,农作物生长过程的识别与监控问题一直是一项具有挑战性的任务,基于此提出一种基于物联网的远程温室视觉监控系统,系统通过LoRa无线通信技术监测温室内的温湿度、光照强度等环境参数,能够及时监测到农作物的生长状况,并实现自动通风、自动补光等功能。在PC端的Qt上位机实时监测温室内的环境信息并控制环境参数,通过OV9726摄像头对农作物进行监测,所获得的生长状态信息传输到S3C6410集中控制模块进行处理,结合克隆选择算法和朴素贝叶斯分类器对叶片进行识别处理。本系统采用LoRa模块进行自组网来实现环境监测,将Linux操作系统移植到集中控制模块,为视觉系统软硬件平台的搭建做准备工作,所使用的组合算法能够使得农作物叶片识别率达到95.3%,识别时间达到8.4 ms,对于叶片识别精度等方面有着明显的提升,经过实验充分验证本系统所使用的设备与算法的有效性。  相似文献   
132.
[目的]克隆陆川猪心肌锚蛋白重复域1基因(ANKRD1),并进行生物信息学及组织表达谱分析,为研究ANKRD1在陆川猪机体内的功能作用提供参考依据.[方法]根据NCBI已公布的野猪ANKRD1基因序列(NM_213922.1)设计特异性引物,采用TRIzol法提取陆川猪心脏、肝脏、脾脏、肺脏、肾脏、背最长肌和皮下脂肪的总RNA,反转录合成cDNA,并以此为模板进行ANKRD1基因克隆,通过MegAlign、Protaram、Protscale、MHMM Server和Sig-nalP等在线分析软件进行生物信息学分析,最后以实时荧光定量PCR检测ANKRD1基因在陆川猪各组织中的表达情况.[结果]陆川猪ANKRD1基因蛋白编码区(CDS)序列全长960 bp,编码319个氨基酸残基,与NCBI已公布野猪ANKRD1基因(NM_213922.1)的CDS序列存在4处碱基突变,但均为同义突变,二者的ANKRD1氨基酸序列同源性为99.6%.陆川猪ANKRD1基因编码蛋白分子量为36125.70 Da,理论等电点(pI)为7.09,属于稳定蛋白,其二级结构中α-螺旋占46.39%、无规则卷曲占39.81%、β-转角占9.09%、延伸链占4.70%;陆川猪ANKRD1蛋白不存在跨膜结构,也无信号肽,有多个磷酸化位点.陆川猪ANKRD1基因在其心脏、肝脏、脾脏、肺脏、肾脏、背最长肌和皮下脂肪等7个组织中均有表达,其中以心脏中的相对表达量最高,显著高于在其他组织中的相对表达量(P<0.05,下同),在脾脏中的相对表达量最低,显著低于在心脏、肝脏、肺脏和背最长肌中的相对表达量.[结论]ANKRD1基因在陆川猪的心脏、肝脏、脾脏、肺脏、肾脏、背最长肌和皮下脂肪等组织中均有表达,且存在明显差异,故推测ANKRD1基因在不同组织中发挥不同作用.  相似文献   
133.
[目的]制备猪源IKKγ多克隆抗体,为进一步研究IKKγ蛋白生物学特性及揭示IKKγ蛋白与猪瘟病毒(CSFV)间相互作用机制打下基础.[方法]利用RT-PCR从猪肾细胞(PK-15)中克隆原核表达的IKKγ基因功能片段(561 bp),与原核表达载体pET-32a(+)构建原核重组质粒pET-IKKγ,转化大肠杆菌BL21(DE3)感受态细胞后进行IPTG诱导表达,表达的融合蛋白经纯化和浓缩后,免疫小鼠制备猪源IKKγ多克隆抗体.同时克隆IKKγ基因全长序列(1356 bp),与真核表达载体pCMV-HA构建真核重组质粒pCMV-HA-IKKγ,分别转染293T细胞和PK-15细胞,检测融合蛋白表达情况.[结果]以原核重组质粒pET-IKKγ转化BL21感受态细胞,经IPTG诱导能表达出约40 kD的融合蛋白,且融合蛋白主要以可溶性蛋白形式进行表达,可通过Ni-NTA亲和层析柱进行纯化,已获得较高纯度的融合蛋白IKKγ.构建的真核重组质粒pCMV-HA-IKKγ能在293T细胞中成功表达出IKKγ蛋白;制备获得的猪源IKKγ多克隆抗体能与293T细胞表达融合蛋白IKKγ发生特异性反应,其抗体效价为1:16000,与PK-15细胞表达IKKγ蛋白也具有良好的反应性,其中CSFV感染后36 h是IKKγ蛋白表达高峰期.此外,制备获得的猪源IKKγ多克隆抗体能在PK-15细胞中成功检测到IKKγ蛋白,说明猪源IKKγ多克隆抗体与真核细胞瞬时表达的IKKγ蛋白特异性良好.[结论]制备获得的猪源IKKγ多克隆抗体具有效价高、特异性强等特点,可用于检测CSFV感染PK-15细胞中IKKγ蛋白表达水平,为下一步研究IKKγ蛋白生物学特性及揭示NF-κB信号通路转录调节功能机制提供技术支持.  相似文献   
134.
[目的]利用酵母单杂交文库筛选巨峰葡萄VvFT基因启动子上游调控因子,挖掘参与调控葡萄开花时间的因子,为揭示花期转变代谢通路和定向改良葡萄品种提供理论参考.[方法]利用PlantCARE分析预测VvFT基因启动子顺式作用元件,并以VvFT基因启动子为诱饵,利用酵母单杂交文库筛选技术,筛选作用在VvFT基因启动子上游的调控因子.[结果]葡萄VvFT基因启动子区域存在13种启动子顺式作用元件,包括A-box、CAAT-box和TATA-box组成型调控元件;光响应调控元件ATC-motif、Box 4、G-Box和GT1-motif;茉莉酸甲酯(MeJA)响应调控元件CGTCA-motif和TGACG-motif;干旱诱导的MYB结合位点元件MBS;玉米蛋白代谢必需的调控元件O2-site;参与生物钟控制的调控元件circadian;厌氧诱导必需调控元件ARE.以VvFT基因启动子为诱饵,筛选获得34条表达序列标签(EST),其中有21条为未知功能,有13条在植物生长、抗逆防御、信号转导、转录调控、蛋白酶等方面均有已知或预测的功能,包括转录抑制因子ft41、GRF1互作因子ft44、NAP1相关蛋白ft64及ft70分子伴侣DnaJ10.酵母单杂交点对点验证结果表明VvDnaJ10和VvFT基因启动子之间有相互作用.[结论]通过酵母单杂交文库筛选获取13条候选EST,虽然大部分EST功能预测分析结果与VvFT调控开花时间无明显的直接关系,但研究结果为进一步探索VvFT转录或表达水平控制葡萄开花时间的分子机制提供侯选基因.  相似文献   
135.
根据胡椒4-香豆酸:辅酶A连接酶(4-coumarate:coenzyme A ligase, 4CL)基因的部分序列设计引物,运用RACE方法获得其家族成员的1个全长cDNA,命名为Pn4cl,长度2130 bp,开放阅读框1638 bp,编码545个氨基酸。预测Pn4CL分子量为59.57 kDa,理论等电点为5.70。该基因含有AMP-binding(AMP-binding enzyme)、CaiC[Acyl-CoA synthetase (AMP-forming) /AMP-acid ligaseⅡ]、PLN02246、AFD-class I等结合域,具有植物4CL所共有的保守结构域。系统进化分析表明,Pn4CL与北细辛的同源性最高,同时与木兰分支类植物的4CL聚类在一起,与菊分支的进化距离较近,与蔷薇分支的进化距离较远。亚细胞定位表明,该蛋白定位在细胞膜上。Real-time RT-PCR结果表明,该基因受外援激素SA和MeJA诱导表达,同时接种辣椒疫霉菌后,Pn4CL基因的表达量在抗/感2种胡椒中均出现先增加后减少的现象,并且在抗病种质中表达量较高。研究结果为Pn4CL的功能研究提供了理论依据。  相似文献   
136.
采用RT-PCR技术克隆了1个编码NI基因的cDNA序列,命名为MiNI基因,并对不同来源的中性/碱性转化酶的分子特征及系统进化进行比较分析。结果表明:MiNI基因开放阅读框为2034 bp,编码677个氨基酸,相对分子量为76.6 kDa,理论等电点为6.24;生物信息学分析结果显示,NI二级结构α螺旋占38.85%,无规则卷曲占35.45%,伸展链占18.91%,β折叠占6.79%;MiNI具有glycoside hydrolase family 100结构保守域,与克里曼丁桔、龙眼、巴西橡胶树和番木瓜都具有一致的motif位点;MiNI基因编码的氨基酸序列与克里曼丁桔、龙眼氨基酸序列同源性最高;构建NI系统进化树分析表明,与芒果遗传距离最近的是克里曼丁桔,最远的是玉米和枸杞。qRT-PCR分析显示,果皮MiNI基因表达量远高于果肉;花后10~40 d,果皮MiNI基因表达量显著下降;花后40~100 d,果皮MiNI基因表达量维持在一个相对稳定水平;花后100~130 d,随着果实成熟,果皮MiNI基因表达量又显著上升;而花后10~40 d,果肉MiNI基因表达量显著下降,至果实发育后期果肉MiNI基因表达量始终处于极低水平。该研究为进一步了解MiNI基因在芒果果实蔗糖代谢过程中的作用以及从分子角度阐明芒果糖代谢机理奠定理论和技术基础。  相似文献   
137.
低温冷害是小麦生长发育过程中面临的重要非生物逆境因素。为了挖掘小麦耐冷功能基因,本研究采用同源克隆的方法从普通小麦品种小偃22中分离到一个耐冷相关基因TaCTR,该基因序列全长2 192 bp,含有12个外显子、11个内含子,编码区全长为1 407 bp,编码468个氨基酸,分子量约为53.43 kDa;系统进化树分析表明,该基因在进化关系上与山羊草最近;亚细胞定位结果显示,该基因编码的蛋白为膜蛋白;实时荧光定量PCR(RT-PCR)结果表明,TaCTR在不同品种、不同组织和不同发育阶段低温特异表达;在干旱、高盐及GA处理下,TaCTR的表达量显著上升,说明该基因可能参与调控小麦的抗逆反应。  相似文献   
138.
为日本荚蒾的分子鉴定及遗传多样性研究提供参考,在克隆日本荚蒾rDNA ITS全长的基础上,利用生物信息学手段明确其序列特征和系统发育关系。结果表明:日本荚蒾的ITS全长为617bp,ITS1、ITS2和5.8S序列长度分别为226bp、227bp和164bp;荚蒾属18种植物的ITS全长为607~617bp,其中ITS1为224~230bp,ITS2为219~227bp;ITS1和ITS2的变异位点各有86个和74个,其中信息位点分别为41个和29个;荚蒾属植物的平均遗传距离为0.062,日本荚蒾和宜昌荚蒾之间的遗传距离最小,在系统发育树上处于同一分支,支持率达99%。  相似文献   
139.
【目的】为高致病性猪繁殖与呼吸综合征病毒(Highly pathogenic porcine reproductive and respiratory syndrome virus,HP-PRRSV)的结构功能和致病机理的研究奠定基础。【方法】运用反向遗传技术将HP-PRRSV JXA1株的全基因组分段克隆至改造过的低拷贝载体pOKq上,并在病毒基因组两端分别添加CMV启动子和BGH终止信号肽以及在病毒全基因组第510位核苷酸突变引入Fse I酶切位点,作为遗传标记位点。采取基于DNA-launched途径进行病毒拯救,并对拯救的病毒进行生物学特性分析。【结果】构建的PRRSV JXA1毒株的全长cDNA克隆具有感染性;成功拯救了病毒,命名为rJXA1;成功引入了拯救病毒的遗传标记;拯救病毒与亲本病毒的生长曲线相似,二者达到最高滴度的时间均为感染后72 h。【结论】成功构建了JXA1株反向遗传平台,为进一步研究HP-PRRSV的致病机理、基因功能以及新型疫苗研发奠定了基础。  相似文献   
140.
利用RT-PCR和RACE技术获得了斜纹夜蛾精氨酸激酶基因的全长cDNA,命名为SlAK,其GenBank登录号为HQ840714。序列分析结果表明:该cDNA全长1373 bp,其中5′和3′UTR的长度分别为65和240 bp;其开放阅读框位于66~1133 bp,编码355个氨基酸。同源性分析结果显示,精氨酸激酶基因蛋白序列享有较高的同源性,该序列具有精氨酸激酶典型的酶活性部位氨基酸序列CPTNLGT、酶活性位点氨基酸和能形成离子耦合结构的氨基酸。SlAK基因在斜纹夜蛾幼虫的头部、中肠、脂肪体和体壁内均有表达,以在中肠内的表达水平最高;SlAK基因在斜纹夜蛾幼虫不同发育期的表达量不同,mRNA表达水平在3龄达到最高峰。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号