首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   5篇
  国内免费   8篇
林业   20篇
农学   5篇
基础科学   6篇
  112篇
综合类   27篇
农作物   3篇
畜牧兽医   2篇
园艺   1篇
植物保护   4篇
  2024年   3篇
  2023年   6篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   13篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   12篇
  2012年   10篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
171.
Micromorphology indicates that soils of the central part of the Gangetic Plains are polygenetic. They occur on surfaces originating at 13 500, 8000, 2500, >500 and <500 BP (QGH5 to QGH1, respectively). The QGH5 soils on upland interfluves show degraded illuvial clay pedofeatures of an early humid phase (13 500–11 000 BP) and thick (150–200 μm) microlaminated clay pedofeatures of a later humid phase (6500–4000 BP). The earlier clay pedofeatures were degraded by bleaching, loss of preferred orientation, development of a coarse speckled appearance and fragmentation, whereas those of the later phase are thick, smooth and strongly birefringent microlaminated clay pedofeatures. The illuviation was more extensive during the later phase, as indicated by enrichment of groundmass as discrete pedofeatures of clay intercalations. Pedogenic carbonate was formed during the intervening dry phase from the early Holocene to 6500 BP. It forms irregularly shaped nodules of micrite and diffuse needles with inclusions of soil constituents. The subsequent change to wetter conditions caused dissolution–reprecipitation, which resulted in partial to complete removal of carbonate from soils over large areas.  相似文献   
172.
In Japan, acidification of terrestrial water has not yet been reported except lakes acidified by volcano or mine. However, acid deposition in Japan is as much as those in northern Europe and north-eastern U.S.A., and acidification of terrestrial water may occur in future. In order to predict long-term acidification, it is necessary to understand acid-neutralization mechanism in watershed. Therefore, two experimental watersheds study for geology, hydrology, and water chemistry were conducted. On the basis of these data, chemical change in percolation of precipitation through watersheds and acid-neutralization mechanism are analyzed. The principal results are: (1) Acid deposition is neutralized continuously in percolation of precipitation from ground-surface to aquifer, (2) Chemical weathering of primary minerals plays an important role in the acidneutralization in the watersheds, and should be quantified and taken into account in the long-term prediction of acidification.  相似文献   
173.
Ion release in the C horizon of a Skeletic Umbrisol on gneiss bedrock was investigated by percolation experiments at a water status near field capacity and with adjusted CO2 partial pressures in soil air. CO2 partial pressures of 0.001, 0.01, and 0.1 bar with pH‐values of 5.7, 4.9, and 4.5 yielded cation release rates of 3.0, 8.5, and 12.3 kmolc yr–1 ha–1 at a 1 m horizon depth and 800 mm seepage water. Within the pH range of 5.7 to 4.5, the activity of carbonic acid triggers ion release. For the treatment with a CO2 partial pressure of 0.001, the isolation of a weathering rate (0.5 kmolc yr–1 ha–1) was possible because parallel running processes such as the dissolution of solid compounds could be identified by dissolved anions, and exchange processes only modified internal ratios of mobilized basic cations. The weathering rate at a site‐typical CO2 partial pressure of 0.01 bar was about 5–10 times higher than usually assumed in the literature. There are three reasons that may account for this: (1) the consideration of actual carbonic acid activities and (2) specific site features such as the richness of basic minerals and/or the presence of a skeletal fraction with micro voids and fissures providing large internal surfaces. Furthermore, (3) it can not be completely excluded that parallel running exchange processes contribute to ion release.  相似文献   
174.
175.
冻融循环老化降低竹粉/聚丙烯发泡复合材料性能   总被引:3,自引:3,他引:0  
竹粉/聚丙烯(polypropylene,PP)发泡复合材料具有密度低、比强度高等优点,为了探讨期老化规律,该文研究冻融循环对不同竹粉含量(0,20%,33%和42%)的发泡复合材料的材色、物理力学性能、热学性能的影响,并结合环境扫描电镜(environmental scanning electronic microscopy,ESEM)和傅里叶红外光谱(fourier transform infrared spectrum,FTIR)对复合材料的表面形貌及化学结构进行分析。结果表明:随着竹粉含量增加,冻融循环老化对复合材料的材色和物理力学性能影响越明显,且随着冻融循环次数的增加,复合材料产生的色差越大,力学性能降低越多。9次冻融循环后,0、20%、33%和42%竹粉/PP发泡复合材料产生的色差ΔE*分别为0.9、2.4、7.0和9.9,弯曲模量、弯曲强度、拉伸强度和缺口冲击强度的保留率分别为95.2%~99.1%、97.3%~98.9%、94.9%~97.5%和92.0%~95.6%。热重分析(thermogravimetric analysis,TG)结果表明,9次冻融循环老化后,0和33%竹粉/PP发泡复合材料的初始热分解温度分别下降了19和8℃。ESEM显示,老化后复合材料表面出现少量的裂纹以及褶皱,且少量的表层高分子层脱落。FITR测试结果发现,冻融循环过程中复合材料的木材指数减少,表明材料表面的竹粉颗粒损失,且基体PP的基团峰强度减弱。该研究可为进一步探索竹塑发泡复合材料的老化规律,制定产品标准提供试验数据和理论参考。  相似文献   
176.
采用CT扫描技术、X射线荧光光谱仪化学全量分析和实验室土壤理化特性测试方法,对浙江省典型风化花岗岩坡地土壤发育的主要物理指标、化学风化系数及风化强度进行了测量计算,分析了侵蚀环境下不同地貌部位的土壤发育特征。结果表明:坡地土壤的发育程度较弱,土壤分层不明显,不同地貌部位的土壤风化发育程度排序为坡底<坡中<坡顶,与坡面侵蚀强度的排序正好相反。土壤物理风化指标随土层深度增加的变化规律较强,脱硅富铝化过程随着剖面深度的增加越来越弱,物理风化指标和化学风化指标具有同等作用的表征效果,不同于当地地带性土壤发育中以化学风化为主的特性。水力侵蚀强烈地区的最大风化强度位于20-40 cm处,推得水力侵蚀对土壤发育的影响深度为0-40 cm。  相似文献   
177.
不同风化年限的淮南矿区煤矸石理化性质变化规律   总被引:2,自引:2,他引:2  
堆存于地表的煤矸石在遭受风化以后,其物理和化学性质可在短时间内发生较大变化,这些变化往往具有一定规律。该文选取淮南矿区潘北、潘一及新庄孜煤矿5个不同风化年限的煤矸石采样区进行分层采样。通过对135个样品的相关理化性质测试,对比分析了不同风化程度下煤矸石主要理化性质变化规律。结果表明,煤矸石在电导率、pH值和阳离子交换量等理化性质的变化具有一定规律:随着风化年限的增加,煤矸石电导率与pH值降低,阳离子交换量则不断增高。新鲜煤矸石的3项指标在2a内具有较快的降低速率,其中电导率在2 a内可降低30%,pH值下降接近10%,此后的降低变化速率则较缓慢。阳离子交换量在2 a内可增加17%,在后期的变化中则表现为缓慢上升趋势。在剖面变化特征方面,通过对30和30~60 cm之间的上下两层对比分析发现位于上层的电导率与pH值普遍略高于下层,阳离子交换量则为上层略低于下层。其中p H值的上、下两层的变化差距较小,仅在0.1~0.3之间。煤矸石的电导率、pH值,以及阳离子交换量等3项指标的时空变化均与风化作用的时间或风化程度密切相关。从植物生长条件角度出发,上述理化指标的变化均有利于煤矸石的复垦利用。  相似文献   
178.
黄土-古土壤的化学风化特征对于理解亚洲内陆干旱化、东亚季风演化以及全球碳循环等具有重要意义.然而,对于亚洲内陆干旱化东进进程最前缘的哈尔滨黄土-古土壤的化学风化特征一无所知.本文对哈尔滨荒山岩芯的黄土-古土壤进行元素地球化学、磁化率和重矿物分析.哈尔滨古土壤的颜色为灰褐色-灰黑色,不同于其他地区的棕红色.黄土-古土壤的...  相似文献   
179.
[目的] 研究基岩地区地表风化层渗透特性,寻求其渗透系数的确定方法,可为孔隙-裂隙岩体地下工程的性能评价提供科学依据。 [方法] 以中国南部沿海花岗岩为研究对象,采用张力入渗仪,重点针对基岩风化层开展入渗试验研究,利用非线性回归法、多压力法、WS方法以及瞬态方法中的单盘测定法计算渗透系数,开展不同方法的综合对比与地质统计分析,确定研究区场地基岩表层风化层的渗透系数及其空间分布规律。 [结果] ①研究区基岩全风化层渗透系数分布在0.023~3.918 m/d,平均渗透系数约为0.971 m/d,与经验值相符; ②研究区地形较高处基岩风化层渗透能力相对较强,地形较低处渗透能力较弱; ③不同计算方法获得的渗透系数存在一定的差异性; ④多压力方法更适合研究区基岩风化层渗透系数的确定。 [结论] 研究区基岩风化层渗透系数可采用张力入渗仪和多压力方法确定,其渗透性能整体较弱。  相似文献   
180.
Four pedons of Arenic/Grossarenic Paleustalf (Denteso Series), in the Volta Lake drawdown area in Northern Ghana, were described and sampled just before seasonal floodings commenced in the area. After 5 years of periodic flooding the soils were re-examined and sampled. Soil properties required for soil classification, including the clay mineralogy, of both the pre-flooding and the post-flooding samples were determined. One of the main objectives was to identify changes in soil properties which result from the periodic flooding. X-ray diffraction (XRD) indicated that before flooding the main clay minerals of the Denteso were kaolinite and smectite, and there were also some mica and quartz in the total clay fraction. Comparison of the pre-flooding with the post-flooding data revealed that practically all the smectite disappeared from all the three sampled pedons that were flooded for 5 to 20 weeks during each flood cycle, while the smectite persisted in the non-flooded pedon. With the disappearance of the 2 : 1 lattice clays there occurred a considerable decrease in cation exchange capacity (CEC) and in base saturation of the flooded pedons ranging from 0.04 to 3.63 cmol kg −1. Also, there was an increase in pH by 0.4 to 1 unit in most horizons of the flooded pedons in spite of the general decrease in base saturation. These changes in CEC, base saturation and pH support the XRD evidence that the seasonal floodings caused pedochemical weathering of the smectite in this loamy sand soil at a very fast rate during the 5 year period and this had resulted in the lowering of the buffering capacity and a general impoverishment of the soil series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号