首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1015篇
  免费   120篇
  国内免费   31篇
林业   112篇
农学   61篇
基础科学   88篇
  234篇
综合类   101篇
农作物   41篇
水产渔业   234篇
畜牧兽医   114篇
园艺   30篇
植物保护   151篇
  2024年   10篇
  2023年   22篇
  2022年   14篇
  2021年   49篇
  2020年   43篇
  2019年   61篇
  2018年   42篇
  2017年   56篇
  2016年   48篇
  2015年   38篇
  2014年   50篇
  2013年   69篇
  2012年   50篇
  2011年   63篇
  2010年   50篇
  2009年   77篇
  2008年   61篇
  2007年   39篇
  2006年   45篇
  2005年   34篇
  2004年   20篇
  2003年   46篇
  2002年   20篇
  2001年   18篇
  2000年   24篇
  1999年   19篇
  1998年   10篇
  1997年   13篇
  1996年   10篇
  1995年   16篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   8篇
  1987年   2篇
  1986年   1篇
  1956年   1篇
排序方式: 共有1166条查询结果,搜索用时 31 毫秒
71.
  1. Long‐distance migration is a demanding physical activity, and how well animals manage the associated costs will have important implications for their fitness.
  2. The Oceania humpback whale (Megaptera novaeangliae) population is recovering from past exploitation markedly slower than the neighbouring east Australian whales. The reasons for this are unknown, although higher energetic costs of longer migratory distances could be a possible explanation. Due to their fully aquatic lives, studying the energy expenditure of these large animals requires methods that do not rely on capturing the animal, such as bioenergetic models.
  3. A state‐space model was fitted to satellite data to infer behavioural states for southern migrating whales. Travel speeds and behavioural states were used in a bioenergetic model to estimate the energetic cost of the migration phase. Relative differences in average duration, distance, and energetic costs were compared between migratory routes and distances.
  4. Total energy used during migration was a trade‐off between cost of transport (determined by travel speed) and daily maintenance (determined by daily basal metabolic costs). Oceania whales migrating to the Amundsen and Bellingshausen Seas travelled fastest and furthest, 15 and 21% further than whales migrating to the d'Urville Sea (east Australian whales) and Ross Sea, respectively. Therefore, they had the highest cost of transport, 25 and 85% higher than for d'Urville Sea and Ross Sea whales, respectively. However, energy saved in terms of daily maintenance by using fewer days to complete a longer migration resulted in only a 6–7% increase in total energetic cost.
  5. The results highlight that travelling further does not necessarily translate into an increase in total energy expenditure for migratory whales, since they can compensate for longer distance by travelling faster. Further research on the energetics of different whale populations could provide insight into the productivity of Southern Ocean feeding regions and help understand the environmental and anthropogenic effects on the whales' energy budgets.
  相似文献   
72.
Chile has more than half of the temperate forests in the southern hemisphere. These have been included among the most threatened eco-regions in the world, because of the high degree of endemism and presence of monotypic genera. In this study, we develop empirical models to investigate present and future spatial patterns of woody species richness in temperate forests in south-central Chile. Our aims are both to increase understanding of species richness patterns in such forests and to develop recommendations for forest conservation strategies. Our data were obtained at multiple spatial scales, including field sampling, climate, elevation and topography data, and land-cover and spectrally derived variables from satellite sensor imagery. Climatic and land-cover variables most effectively accounted for tree species richness variability, while only weak relationships were found between explanatory variables and shrub species richness. The best models were used to obtain prediction maps of tree species richness for 2050, using data from the Hadley Centre’s HadCM3 model. Current protected areas are located far from the areas of highest tree conservation value and our models suggest this trend will continue. We therefore suggest that current conservation strategies are insufficient, a trend likely to be repeated across many other areas. We propose the current network of protected areas should be increased, prioritizing sites of both current and future importance to increase the effectiveness of the national protected areas system. In this way, target sites for conservation can also be chosen to bring other benefits, such as improved water supply to populated areas.  相似文献   
73.
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the “rare species modelling paradox” and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models are not over-fitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.  相似文献   
74.
Biofumigation, as originally defined, is the use, in agriculture, of the toxicity of Brassica crop residues to control soilborne plant pathogens. This toxicity is specifically attributed to the release of toxic isothiocyanates, through the hydrolysis of glucosinolates present in the crop residues. This technique is considered a possible alternative to the use of pesticides, but field studies have generated conflicting data concerning the efficacy of biofumigation at field scale, limiting the use of this technique. Analytical studies based on a systematic approach involving evaluation of the potential effects of isothiocyanates can be used to address this problem in a rigorous manner. However, many recent studies have indicated that the mechanisms underlying biofumigation are much more complex than a simple toxic effect of residues. In this review, we dissect and discuss the problems encountered when trying to understand the variability in biofumigation efficacy and propose an integrative epidemiological approach to overcome these problems. This approach involves separating the effects of the different parameters of the system, such as the effects of different management phases of the biofumigant crop (i.e. the period of biofumigant crop growth and the phase during which crop residues are pulverised and incorporated into the soil) on the epidemiological mechanisms driving the development of an epidemic (density of primary inoculum and dynamics of disease progression). Finally, we propose new avenues of research into biofumigation in which the use of epidemiological tools and methods may improve our understanding of the factors underlying variation in the efficacy of biofumigant crops.  相似文献   
75.
Apart from influencing the amount of leaf-deposited particles, tree crown morphology will influence the local distribution of atmospheric particles. Nevertheless, tree crowns are often represented very rudimentary in three-dimensional air quality models. Therefore, the influence of tree crown representation on the local ambient PM10 concentration and resulting leaf-deposited PM10 mass was evaluated, using the three-dimensional computational fluid dynamics (CFD) model ENVI-met® and ground-based LiDAR imaging. The modelled leaf-deposited PM10 mass was compared to gravimetric results within three different particle size fractions (0.2–3, 3–10 and >10 μm), obtained at 20 locations within the tree crown. Modelling of the LiDAR-derived tree crown resulted in altered atmospheric PM10 concentrations in the vicinity of the tree crown. Although this model study was limited to a single tree and model configuration, our results demonstrate that improving tree crown characteristics (shape, dimensions and LAD) affects the resulting local PM10 distribution in ENVI-met. An accurate tree crown representation seems, therefore, of great importance when aiming at modelling the local PM distribution.  相似文献   
76.
Mountaintop mining with valley fills (MTM/VF) is the main source of landscape change in central Appalachia. While our knowledge of the local‐scale effects of MTM/VF on stream chemistry and biotic assemblages has recently improved, the effects at the landscape scale are less well known. In this study, we explore the effects of MTM/VF on the distributions of six fish species with contrasting ecologies in the upper Kentucky River basin, an area heavily affected by MTM/VF. Using a museum‐based data set of 239 occurrence records, land use/land cover data and boosted regression tree modelling, we were able to create robust predictive models for the focal species (AUCs = 0.82–0.93). Models explained from 41.2 to 71.9% of the variation in species distributions. We detected a marked negative influence of MTM/VF in four of the six species distribution models – with relative influences ranging from 5.9–12.7%. Species typically inhabiting faster‐flowing riffle and run mesohabitats appeared to respond more strongly to MTM/VF. Interestingly, the mean patch size of MTM/VF was more influential than the overall proportion of the watershed affected by MTM/VF in our models. Thus, our data suggest the spatial pattern of mining disturbance is very important in determining the cumulative impact of MTM/VF. Considering the central Appalachian region is a continental hot spot for freshwater biodiversity, establishing a firm understanding of the effects of MTM/VF at the landscape scale is essential if we wish to protect these natural resources.  相似文献   
77.
For spatial crop and agro-systems modelling, there is often a discrepancy between the scale of measured driving data and the target resolution. Spatial data aggregation is often necessary, which can introduce additional uncertainty into the simulation results. Previous studies have shown that climate data aggregation has little effect on simulation of phenological stages, but effects on net primary production (NPP) might still be expected through changing the length of the growing season and the period of grain filling. This study investigates the impact of spatial climate data aggregation on NPP simulation results, applying eleven different models for the same study region (∼34,000 km2), situated in Western Germany. To isolate effects of climate, soil data and management were assumed to be constant over the entire study area and over the entire study period of 29 years. Two crops, winter wheat and silage maize, were tested as monocultures. Compared to the impact of climate data aggregation on yield, the effect on NPP is in a similar range, but is slightly lower, with only small impacts on averages over the entire simulation period and study region. Maximum differences between the five scales in the range of 1–100 km grid cells show changes of 0.4–7.8% and 0.0–4.8% for wheat and maize, respectively, whereas the simulated potential NPP averages of the models show a wide range (1.9–4.2 g C m−2 d−1 and 2.7–6.1 g C m−2 d−1 for wheat and maize, respectively). The impact of the spatial aggregation was also tested for shorter time periods, to see if impacts over shorter periods attenuate over longer periods. The results show larger impacts for single years (up to 9.4% for wheat and up to 13.6% for maize). An analysis of extreme weather conditions shows an aggregation effect in vulnerability up to 12.8% and 15.5% between the different resolutions for wheat and maize, respectively. Simulations of NPP averages over larger areas (e.g. regional scale) and longer time periods (several years) are relatively insensitive to climate data aggregation. However, the scale of climate data is more relevant for impacts on annual averages of NPP or if the period is strongly affected or dominated by drought stress. There should be an awareness of the greater uncertainty for the NPP values in these situations if data are not available at high resolution. On the other hand, the results suggest that there is no need to simulate at high resolution for long term regional NPP averages based on the simplified assumptions (soil and management constant in time and space) used in this study.  相似文献   
78.
Density‐dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population‐level pattern and found density‐dependent growth and mortality present for both common life‐history strategies, but no evidence of density‐dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management.  相似文献   
79.
变时相生长模型技术及其在小班数据更新中的应用   总被引:3,自引:2,他引:1  
小班数据更新是地方森林资源监测和资源档案管理的需要,实现它的必要条件是建立小班动态数据库和建立小班数据更新模型。本文着重对后者的现实林分建模中每年变化的大量的部分,采伐的问题处理,根据微变化调整原理,提出变时相生长模型技术,从而消除了误差逐年积累和放大的问题,提高了小班数据更新的可靠性。  相似文献   
80.
We combine high‐resolution soil sampling with lead (Pb) analyses (concentrations and stable isotopes) in two temperate podzols, together with previous data obtained with selective Al and Fe dissolution techniques. We aim to assess how atmospheric Pb is incorporated into the soils during pedogenesis. Partial least squares modelling for Pb concentrations shows that the podzolization process has the largest effect on Pb concentration (80·3% of the variance). The proportion of inorganic secondary compounds, the input of fresh organic matter from the soil surface and the relative abundance of Fe versus Al are responsible for a small part of the Pb concentration variance. Lead isotopic composition (206Pb/207Pb ratios) depends on soil organic matter content either fresh/poorly humified (57·3% of the variance) or humified (24·7% of the variance). The Pb linked to inorganic compounds and the overall podzolization process play a minor role in isotopic signature (5·3 and 3·7% of the variance respectively). Soil pH appears to be the controlling variable of the different transport and retention mechanisms. The relatively low isotopic ratios observed in spodic horizons result from geogenic Pb released through the preferential dissolution of the isotopically distinct most weatherable minerals of the parent material in the eluvial horizons, which undergoes downward mobilization. An accurate knowledge of soil reactive components and formation mechanisms is essential to a correct diagnose of the scope of Pb pollution and a more effective design of remediation strategies. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号