首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13827篇
  免费   807篇
  国内免费   1812篇
林业   463篇
农学   1336篇
基础科学   461篇
  5338篇
综合类   5423篇
农作物   1028篇
水产渔业   426篇
畜牧兽医   1179篇
园艺   271篇
植物保护   521篇
  2024年   115篇
  2023年   381篇
  2022年   629篇
  2021年   661篇
  2020年   704篇
  2019年   736篇
  2018年   614篇
  2017年   867篇
  2016年   976篇
  2015年   729篇
  2014年   736篇
  2013年   1235篇
  2012年   1249篇
  2011年   975篇
  2010年   766篇
  2009年   727篇
  2008年   550篇
  2007年   627篇
  2006年   564篇
  2005年   453篇
  2004年   331篇
  2003年   264篇
  2002年   204篇
  2001年   175篇
  2000年   146篇
  1999年   134篇
  1998年   109篇
  1997年   98篇
  1996年   103篇
  1995年   110篇
  1994年   65篇
  1993年   82篇
  1992年   62篇
  1991年   57篇
  1990年   46篇
  1989年   47篇
  1988年   38篇
  1987年   26篇
  1986年   19篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
61.
The introduction of new hybrids and integrated crop-soil management has been causing maize grain yield to increase. However, less attention has been paid on the nutrient concentration of the grain; this aspect is of great importance to supplying calories and nutrients in the diets of both humans and animals worldwide. Increasing the retranslocation of nutrients from vegetative organs to grain can effectively increase the nutrient concentration of grain and general nutrient use efficiency. The present study involved monitoring the dynamic change of macro- and micronutrients in different organs of maize during the grain filling stage. In addition, the mobility of different elements and their contribution to grain nutrient content were evaluated in a 2-year experiment under low (LN, no N supplied) and high N (HN, 180 kg N ha−1) supply. Under HN supply, the net remobilization efficiency (RE) of the vegetative organs as a whole (calculated as nutrient remobilization amount divided by nutrient content at silking) of N, P, K, Mn, and Zn were 44%, 60%, 13%, 15%, and 25%, respectively. The other nutrients (Mg, Ca, Fe, Cu, and B) showed a net accumulation in the vegetative organs as a whole during the grain filling stage. Among the different organs, N, P, and Zn were remobilized more from the leaves (RE of 44%, 51% and 43%, respectively) and the stalks (including leaf sheaths and tassels) (RE of 48%, 71% and 43%, respectively). K was mainly remobilized from the leaves with RE of 51%. Mg, Ca, Fe, Mn, and Cu were mostly remobilized from the stalks with the RE of 23%, 9%, 10%, 42%, and 28%, respectively. However, most of the remobilized Mg, Ca, Fe, Mn, Cu, and Zn were translocated to the husk and cob, which seemingly served as the buffer sink for these nutrients. The REs of all the nutrients except for P, K, and Zn were vulnerable to variations in conditions annually and were reduced when the grain yield and harvest index were lower in 2014 compared with 2013. Under LN stress, the RE was reduced in P and Zn in 2013, increased in Cu and unchanged in other nutrients. The concentration of these nutrients in the grain was either unchanged (P, K, Ca, Zn, and B) or decreased (N, Mg, Fe, Mn, and Cu). It is concluded that grain N, P, K, Mn, and Zn, but not Mg, Ca, Fe, Cu, and B concentration, can be improved by increasing their remobilization from vegetative organs. However, enhancing the senescence of maize plant via LN stress seems unable to increase grain mineral nutrient concentration. Genetic improvement aiming to increase nutrient remobilization should take into account the organ-specific remobilization pattern of the target nutrient.  相似文献   
62.
供氮方式对冬马铃薯氮肥利用效率及氮素去向的影响   总被引:2,自引:0,他引:2  
以马铃薯费乌瑞它为试材,采用田间微区~(15)N示踪技术,研究施N量160kg·hm~(-2)全部基施(T1)、55%基施+45%在齐苗期追施(T2)、55%基施+30%在齐苗期追施+15%在现蕾期追施(T3)3种方式,对冬马铃薯氮肥利用效率及去向的影响。结果表明:马铃薯吸收的N约46%~52%来源于当季施用的氮肥,48%~54%来自土壤和种薯;肥料N利用率为35.16%~39.99%,残留率为47.71%~51.78%,损失率为8.23%~15.50%。3种施氮方式下,肥料N主要残留在0~15cm土层。随施氮时间后移,肥料N残留在0~15cm土层呈上升趋势,在15~45cm土层呈下降趋势。施氮方式对马铃薯干物质积累总量和块茎干物质积累量影响不明显,但T3肥料N利用率、肥料N残留率明显大于T1、T2。因此,综合经济效益和环境效益,T3施氮方式的效果较为理想。本研究为马铃薯氮素养分的有效管理提供了指导依据。  相似文献   
63.
Although the effects of cover crops (CC) on various soil parameters have been fully investigated, less is known about the impacts at different stages in CC cultivation. The objective of this study was to quantify the influence of CC cultivation stages and residue placement on aggregates and microbial carbon (Cmic). Additionally, the influence of residue location and crop species on CO2 emissions and leached mineralized nitrogen (Nmin) during the plant degradation period was also investigated. Within an incubation experiment, four CC species were sown in soil columns, with additional columns being kept plant‐free. After plant growth, the columns were frozen (as occurs in winter under field conditions) and then incubated with the plant material either incorporated or surface‐applied. With CC, concentrations of large and medium macroaggregates were twice that of the fallow, confirming positive effects of root growth. Freezing led to a decrease in these aggregate size classes. In the subsequent incubation, the large macroaggregates decreased far more in the samples with CC than in the fallow, leading to similar aggregate size distributions. No difference in Cmic concentration was found among the CC cultivation stages. CO2 emissions were roughly equivalent to the carbon amounts added as plant residues. Comparison of columns with incorporated or surface‐applied residues indicated no consistent pattern of aggregate distribution, CO2 emission or Cmic and Nmin concentrations. Our results suggest that positive effects of CC cultivation are only short term and that a large amount of organic material in the soil could have a greater influence than CC cultivation.  相似文献   
64.
目的:观察持续被动运动(CPM)和补充一氧化氮(NO)供体——硝酸甘油(NG)对兔骨关节炎(OA)模型中软骨基质金属蛋白酶-1(MMP-1)和MMP-13表达以及NO含量的影响,探讨CPM下调MMPs的可能机制。方法:30只3~4月龄雄性新西兰大白兔,其中6只进行假手术作为正常对照组(NC组),另外24只建立膝关节OA模型,术后随机分为4组,即OA对照组(OA组)、OA硝酸甘油给药组(NG组)、OA持续被动运动组(CPM组)、OA持续被动运动+硝酸甘油给药组(CPM+NG组),每组各6只。NC组和OA组不作处理,NG组给予NG软膏膝关节局部涂抹,CMP组在CPM训练仪上进行膝关节持续被动运动,CMP+NG组即在运动干预的同时给予NG局部涂抹。4周后取各组软骨组织,硝酸还原酶法测定NO含量,HE染色观察软骨形态学变化并进行Mankin''s评分,实时荧光定量PCR(RQ-PCR)检测MMP-1和MMP-13 mRNA水平,免疫组织化学法测定MMP-1和MMP-13蛋白表达量。结果:NO含量、Mankin''s评分以及MMP-1和MMP-13 mRNA和蛋白水平在OA组明显高于NC组(P<0.01),NG组高于OA组(P<0.01),CPM组低于OA组和NG组(P<0.01),CPM+NG组低于NG组(P<0.01),但高于CPM组(P<0.01)。结论:CPM通过抑制软骨细胞NO合成下调MMP-1和MMP-13表达,进而对软骨细胞起保护作用。  相似文献   
65.
李鹏 《中国奶牛》2011,(22):11-14
本文利用34组国内外报道的荷斯坦牛乳中尿素氮浓度和尿氮排泄量的实测数据,对目前提出的部分利用MUN估测尿氮排泄量的模型进行了比较。结果表明,Zhai(2005)提出的模型[UN(g/d):10.1×MUN(mg/dL)+47.3]预测效果较好(P〉0.05)。划分MUN浓度范围分别建立模型可能会提高预测的准确度。此外,根据34组数据做简单回归:UN(g/d)=12.78×MUN(mg/d1)+28.15(n=34,R2=0.59)。  相似文献   
66.
席颖  贾国梅  王旭  何立 《湖北农业科学》2016,(16):4113-4116
不同植被类型影响着土壤养分的积累、分布与循环,而土壤氮素是植被生长的重要限制性元素。通过分析宜昌点军区3种植被类型(柏树地、橘树地、菜地)覆盖下土壤氮素的变化情况,研究了不同植被对土壤氮素各形态的影响。结果表明,土壤全氮、硝态氮和微生物氮都是柏树地显著大于菜地和橘树地,而菜地和橘树地之间无显著性的差异;土壤矿化氮和微生物氮/全氮的变化顺序是柏树地橘树地菜地。说明不同植被覆盖对土壤氮有显著的影响,柏树地更有利于土壤氮的积累,氮的有效性也最高,由此认为柏树长期生长有益于土壤氮的改善。  相似文献   
67.
用三氮脒以3.5 mg/kg的剂量对患有附红细胞体病的藏獒进行肌肉注射,隔日用同等剂量的三氮脒肌肉注射,24 h后,藏獒发生以神经症状为主的中毒现象,并表现出食欲废绝,后肢发软,四肢抽搐呈划水状,卧地不起,昏迷,体温正常临床症状。经血清生化检验,藏獒的尿素氮、肌酸激酶等的生化指标明显升高,血糖降低占病例的100%。经过5 d的药物治疗后,中毒藏獒基本恢复健康。  相似文献   
68.
Soybean (Glycine max (L.) Merr.) is able to fix atmospheric nitrogen in symbiosis with the bacteria Bradyrhizobium japonicum. Because these bacteria are not native in European soils, soybean seeds must be inoculated with Bradyrhizobium strains before sowing to fix nitrogen and meet their yield potential. In Central Europe soybean cultivation is still quite new and breeding of early maturing soybean varieties adapted to cool growing conditions has just started.Under these low temperature conditions in Central Europe the inoculation with different, commercially available Bradyrhizobium inoculants has resulted in unsatisfactory nodulation. The aim of this study was: (i) to test the ability of commercially available inoculants to maximize soybean grain yield, protein content and protein yield, (ii) to study the interaction of different inoculants with different soybean varieties for two different sites in Germany under cool growing conditions over three years and (iii) to determine the variability of biological nitrogen fixation. Field trials were set up on an organically managed site at the Hessische Staatsdomäne Frankenhausen (DFH) and on a conventionally managed site in Quedlinburg (QLB) for three consecutive seasons from 2011 to 2013. Three early maturing soybean varieties—Merlin, Bohemians, Protina—were tested in combination with four different Bradyrhizobium inoculants—Radicin No.7, NPPL-Hi Stick, Force 48, Biodoz Rhizofilm—and compared with a non-inoculated control. Effective inoculation with Bradyrhizobium strains increased grain yield, protein content and protein yield by up to 57%, 26% and 99%, respectively. Grain yield, protein content and protein yield were generally higher in DFH. Average grain yield was 1634 kg ha−1 in QLB (2012–2013) and 2455 kg ha−1 in DFH (2011–2013), average protein content was 386 g kg−1 in QLB and 389 g kg−1 in DFH and average protein yield was 650 kg ha−1 in QLB and 965 kg ha−1 in DFH. The percentage of nitrogen derived from air (Ndfa) ranged between 40% and 57%. Soybeans inoculated with Radicin No. 7 failed to form nodules, and crop performance was identical to the non-inoculated control. Biodoz Rhizofilm, NPPL Hi-Stick and Force 48 are suitable for soybean cultivation under cool growing conditions in Germany. Interactions between soybean variety and inoculant were significant for protein content and protein yield at both sites, but not for nodulation, grain yield, thousand kernel weight and Ndfa. The variety Protina in combination with the inoculant Biodoz Rhizofilm can be recommended for tofu for both tested sites, while Merlin and Protina in combination with Biodoz Rhizofilm are recommended for animal fodder production in DFH. Animal fodder production was not profitable in QLB due to low protein yields.  相似文献   
69.
Winter wheat (Triticum aestivum L.) represents almost 50% of total cereal production in the European Union, accounting for approximately 25% of total mineral nitrogen (N) fertilizer applied to all crops. Currently, several active optical sensor (AOS) based systems for optimizing variable N fertilization are commercially available for a variety of crops, including wheat. To ensure successful adoption of these systems, definitive measurable benefits must be demonstrated. Nitrogen management strategies developed based on small-scale plot research are not always meaningful for large-scale farm conditions. In 2010–2012 (5 site-years) on-farm study was implemented in northern Poland utilizing a strip-trial design. The objective was to evaluate the performance of AOS in combination with a built-in algorithm for variable N rate fertilization. In this study, the reference uniform N rates (farmer’s practice) were comparable to optimum variable N rate recommendations. Side-by-side comparisons of uniform and variable N application revealed inconsistent benefits in terms of grain yield, grain protein content (GPC), N use and N use efficiency (NUE). Anticipated yield increases and/or reduced N rates are typical drivers for AOS adoption. Significant yield increases are not easily attained on farms with winter wheat yields already close to maximum yield potential. Thus, sensor-based variable N rate recommendations for fields previously fertilized with relatively low uniform N rates would often entail more appropriate allocation (redistribution) of the same amount of total N. This would minimize N surplus in areas of lower productivity and to improve the sustainability of N management overall.  相似文献   
70.
The nitrogen (N) fertilizer effect of layer hen and broiler manure applied at different times on spring barley yield was studied in seven Swedish field experiments during 2005–2008. Two experiments had parallel field incubations to study N release after fertilizer application. The effect of total N in manure on N offtake was 30–40% that of mineral N, except in a dry year, when the effect was very low. Although the relative proportions of ammonium N, uric acid N and other N differed between the hen and broiler manure, the effect of total N was similar for both. In field incubations, mineral N decreased from 75 to 60% of total N applied in hen manure, whereas it increased from 20 to 50% in broiler manure, because of net immobilization and release, respectively. The limited fertilizer nitrogen replacement value, corresponding to only 30–40% of total N, could be as a result of ammonia volatilization after rather shallow incorporation with harrow. Net N release from broiler manure lasted for 6–8 weeks after application, after which it generally ceased. In some cases, manure application in early spring gave better yield effects than application at sowing, probably because of better synchronization of the N release with crop N requirements. The residual N effect on the N offtake in crop in the year after manure application was on average 3% of the total N applied, equivalent to a fertilizer replacement value of about 6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号