首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1413篇
  免费   54篇
  国内免费   69篇
林业   36篇
农学   88篇
基础科学   43篇
  544篇
综合类   463篇
农作物   66篇
水产渔业   73篇
畜牧兽医   176篇
园艺   22篇
植物保护   25篇
  2024年   11篇
  2023年   26篇
  2022年   29篇
  2021年   45篇
  2020年   43篇
  2019年   51篇
  2018年   38篇
  2017年   68篇
  2016年   53篇
  2015年   50篇
  2014年   45篇
  2013年   214篇
  2012年   134篇
  2011年   58篇
  2010年   53篇
  2009年   48篇
  2008年   47篇
  2007年   63篇
  2006年   51篇
  2005年   33篇
  2004年   36篇
  2003年   38篇
  2002年   19篇
  2001年   33篇
  2000年   23篇
  1999年   31篇
  1998年   22篇
  1997年   14篇
  1996年   25篇
  1995年   18篇
  1994年   15篇
  1993年   12篇
  1992年   22篇
  1991年   12篇
  1990年   15篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   6篇
  1974年   1篇
排序方式: 共有1536条查询结果,搜索用时 15 毫秒
221.
通过对材料组成和结构的设计,获得了高炉渣和钢渣用量为55%-60%,抗弯强度大于300MPa,显微硬度达12GPa,耐磨性比GCr15钢高26倍的玻璃陶瓷。探讨了微晶化工艺条件对钢铁废渣玻璃陶瓷的显微结构和性能的影响,在一定工艺条件下所制备的玻璃陶瓷的晶相含量可达90%以上,晶粒大小仅0.1-0.3μm,多为等轴柱状晶,以辉石类为主晶相。  相似文献   
222.
Radioactively labeled iron (59Fe) was used to study differential uptake in sorghum plants in the recovery stage of chlorosis. Radio-labeled 59Fe was supplied through root feeding in nutrient solution experiment (48 hrs, pH 6.2) to non-chlorotic and chlorotic plants. Chlorotic plants were further treated with foliar spray [ferrous sulfate (FeSO4), FeSO4 + thiourea (TU), FeSO4 + citric acid (CA), FeSO4 + thioglycollic acid (TGA)] to study the uptake of radio-labeled 59Fe through root feeding during recovery process of chlorosis. Under iron deficiency, the differential uptake of 59Fe was markedly increased in leaves and stem of chlorotic control (-Fe) sorghum plants as compared to non-chlorotic control (+Fe) and foliar sprayed (FeSO4, FeSO4 + TU, FeSO4 + CA, and FeSO4 + TGA) plants. The lowest uptake of 59Fe was observed in younger leaves (24.33 nmol, g?1 fresh weight h?1) and stem (1.98 nmol, g?1 fresh weight h?1) of non-chlorotic control followed by foliar sprayed plants in comparison to chlorotic control, respectively. Similarly less 59Fe uptake was observed in the older leaves of FeSO4 + CA sprayed (21.70 nmol, g?1 fresh weight h?1) plants in comparison to chlorotic control (35.60 nmol, g?1 fresh weight h?1). The highest differential 59Fe uptake through nutrient medium was in the roots of plants, which were foliar sprayed with FeSO4 along with TU. The role of iron alone and along with citric acid and thiol compounds is discussed in recovery of chlorosis.  相似文献   
223.
In growth chambers, cotton (Gossypium hirsutum L. genetic selection ‘M8') was grown in a synthetic growth medium under four light regimes: low pressure sodium (LPS), LPS + Incandescent (Inc), cool white fluorescent (CWF) and CWF + Inc lamps at 22 C under LPS lamps. Less chlorosis developed at 26 C than at 22 C and less under LPS + Inc than under LPS lamps. All plants were green under CWF and CWF + Inc light. Green and chlorotic plant tissue contained about the same concentrations of Fe. The proposed hypothesis was that chlorotic tissue’ contained less Fe2+ than green tissue. Chlorotic leaves treated with FeSO4 turned a green color. Enough CWF + Inc light passed through an intact leaf to reduce Fe3+ to Fe2+ in vitro. Also in vitro, Fe3+ was reduced by CWF, by Inc, but not by LPS light. The amount of Fe3+ reduced during an illumination period was directly proportional to the quantity of light used. In vitro, citrate and malate enhanced Fe3+ reduction, whereas phosphate, pyrophosphate, OH, Cu2+, Ni2+, Mn2+, Zn2+, and Fall inhibited Fe3+ reduction by light. Orthophosphate was about 8 times as effective as organic P in decreasing Fe3+ reduction. Citrate largely alleviated the inhibitory effects of Pi and pH (up to pH 6). The data also provide a possible explanation of a role for many of the elements known to induce or aggravate Fe chlorosis (inhibit Fe3+ reduction). Quantity and quality of light apparently play key roles in plant growth as related to reduction of Fe3+ to Fe2+ in plant tops.  相似文献   
224.
Determinate soybean [Glyclne max (L.) Merr.] has been characterized by few detailed micronutrlent partitioning studies. Knowledge of the variation in mlcronutrient concentrations with plant part, nodal position, and plant age is needed for a better understanding of plant functions. In this field study, ‘Bragg’ soybean were grown on an Aquic Paleudult soil (Series Goldsboro loamy sand). Plants were sampled at 10–14 day intervals beginning 44 days after planting (July 7) until harvest. Maximum observed Fe concentrations were 152, 276, 259, and 191 ppm for stem internodes, petioles (+ branches), leaf blades, and pods, respectively. Maximum observed Zn concentrations were 118, 91, 95, and 112 ppm for the same respective plant parts. Maximum observed Mn concentrations were 41, 73, 134, and 63 ppm for the same respective plant parts. Nodal and temporal mean concentra tlons of Fe, Zn, and Mn generally varied considerably due to plant age and nodal position, respectively, in all plant parts. These data document that for plant analysis, mean concentrations of elements in all four plant parts can vary by several fold depending upon plant age and nodal composition of the sample. Regression equations and associated response surfaces will be extremely useful in the development of accurate plant growth models which describe Fe, Zn, and Mn concentrations and translocations among parts of determinate soybean.  相似文献   
225.
The effects of DBP (Dibutyl phthalate) and PA (Phthalic acid) supplied to the nutrient medium of Fe‐deficiency stressed sorghum cultivars, CSH‐5, 2077‐A, and CS‐3541 were examined. It was found that both the chemicals (50 mg/1) caused recovery of the cultivars CSH‐5 and 2077‐A in 4 days of treatment. Furthermore, the growth of roots, especially the adventitious roots, was increased by the chemicals.  相似文献   
226.
Extraction of Fe from fresh leaves with 0.1 N HCl proved to be a better indicator of the Fe status of a variety of ornamental tropical foliage and flowering plants compared to total Fe, 0.1 N HCl‐ether, and IN HCl extraction. It consistently gave higher correlations (r = 0.73 to 0.95 depending on the species) with chlorophyll concentration than the other methods tested. However, even 0.1 N HCl extraction did not distinguish levels of Fe deficiency accurately when compared between species.  相似文献   
227.
An almond X peach seed line, ‘Titan’ X Nemaguard (T X NG), which is tolerant to lime‐induced chlorosis, was compared to a susceptible seedling rootstock, Nemared, under alkaline conditions. The tolerant rootstock's growth was not affected by Fe stress, whereas the susceptible rootstock showed chlorosis which corresponded to approximately a 20% chlorophyll loss in the new foliage during the 18‐week stress period, a 62% decrease in shoot dry weight and a 22% decrease in plant height.  相似文献   
228.
Deficiencies of metal micronutrients are common in some calcareous soils. Samples of aerial parts of maize and five common weeds and also soil beneath these plants were collected and analyzed to investigate the status and relationships of metal micronutrients in soil, crop, and common weeds of maize field trials at two sites. Results showed that Fe concentration in five studied weeds was higher than that of maize; the highest Fe concentration was found in Convolvolus arvensis and Echinochloa crus-galli (first site) and in Convolvolus arvensis tissues (second site). At both sites, the highest Mn concentration was observed in aboveground parts of Echinochloa crus-galli. The concentration of Mn (both sites) and Fe and Cu (second site) were remarkably higher in Echinochloa crus-galli tissues in comparison with maize. Also the concentrations of Fe (both sites) and Cu (second site) were considerably higher in Convolvolus arvensis tissues in comparison with maize. Available Fe was the highest in the soil beneath Convolvolus arvensis and Portulaca oleracea (first site) and beneath Convolvolus arvensis and Cenopodium album (second site). The high value of available Fe in the soil beneath Convolvolus arvensis may explain why Fe concentration was the highest in aerial parts of this weed species.  相似文献   
229.
Abstract

Co-situs is the placement with one application of a sufficient amount of controlled-release fertilizer for an entire growing season at any site, together with seeds or seedlings, without causing fertilizer salt injury. An experiment was conducted to find an efficient method for ameliorating Fe deficiency in two rice cultivars (cv. Tsukinohikari and cv. Sasanishiki) grown in a calcareous soil (pH 9.2, CaCO3 384 g kg?1), which was poor in organic matter (0.1 g kg?1) and available Fe (3.0 μg g?1 soil). The field treatments consisted of co-situs application of the following fertilizers: 1) controlled-release NPK fertilizer (CRF-NPK) containing no micronutrients; 2) controlled-release NPK fertilizer containing micronutrients (CRF-M1); and 3) controlled-release NPK fertilizer containing micronutrients (CRF-M2). The main difference between CRF-M1 and CRF-M2 was that the former had larger granules than the latter. All the fertilizers were placed in contact with the roots of rice seedlings at transplanting time. Plants in the CRF-M1 and CRF-M2 treatments had similar lengths, number of stems, leaf age, and leaf color (SPAR value) during the cultivation period. By contrast, plants from the CRF-NPK treatments grew poorly, showed severe chlorosis symptoms of Fe deficiency, and all died on 30 DAT. Plants of both cultivars accumulated more macroand micronutrients with the CRF-M2 treatment than with the CRF-M1 treatment. The grain yield of cv. Tsukinohikari was 0.0, 1,910, and 2,160 kg ha?1 for the CRF-NPK, CRF-M1, and CRF-M2 treatments, respectively, and 0.0, 2,490, and 2,860 kg ha?1 for the same treatments for cv. Nihonbare. Chlorosis due to iron deficiency was successfully ameliorated and world-average grain yields were obtained with the co-sites application of both controlled-release fertilizers.  相似文献   
230.
The objective of this paper is to review the developments in the last few years in two important issues related to Fe deficiency in plants. First, the current knowledge on the possible ways to carry out the diagnosis and prognosis of Fe deficiency in plants is discussed. This includes discussion on the best ways to carry out a meaningful analysis of Fe-containing compounds in different plant parts. We will also discuss other measurement techniques that can permit to assess the Fe nutritional status in plants, including leaf chlorophyll concentrations and others. Second, the new developments in management techniques to control and remediate iron deficiency are discussed. This includes possible improved ways to supply Fe compounds available to plants, both to the soil and to the irrigation water. We also discuss possible ways to supply directly the plant with Fe containing compounds, either to the foliage or to the stem. A particular emphasis is given throughout the paper to fruit tree crops growing in Mediterranean areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号