全文获取类型
收费全文 | 10181篇 |
免费 | 514篇 |
国内免费 | 772篇 |
专业分类
林业 | 634篇 |
农学 | 605篇 |
基础科学 | 206篇 |
3544篇 | |
综合类 | 3485篇 |
农作物 | 401篇 |
水产渔业 | 436篇 |
畜牧兽医 | 1274篇 |
园艺 | 407篇 |
植物保护 | 475篇 |
出版年
2024年 | 99篇 |
2023年 | 212篇 |
2022年 | 381篇 |
2021年 | 403篇 |
2020年 | 416篇 |
2019年 | 441篇 |
2018年 | 296篇 |
2017年 | 484篇 |
2016年 | 557篇 |
2015年 | 478篇 |
2014年 | 499篇 |
2013年 | 701篇 |
2012年 | 747篇 |
2011年 | 771篇 |
2010年 | 620篇 |
2009年 | 628篇 |
2008年 | 468篇 |
2007年 | 548篇 |
2006年 | 477篇 |
2005年 | 339篇 |
2004年 | 304篇 |
2003年 | 218篇 |
2002年 | 156篇 |
2001年 | 144篇 |
2000年 | 138篇 |
1999年 | 135篇 |
1998年 | 93篇 |
1997年 | 112篇 |
1996年 | 97篇 |
1995年 | 76篇 |
1994年 | 78篇 |
1993年 | 48篇 |
1992年 | 61篇 |
1991年 | 47篇 |
1990年 | 47篇 |
1989年 | 42篇 |
1988年 | 27篇 |
1987年 | 19篇 |
1986年 | 16篇 |
1985年 | 16篇 |
1984年 | 4篇 |
1983年 | 2篇 |
1981年 | 2篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1977年 | 3篇 |
1973年 | 1篇 |
1962年 | 1篇 |
1956年 | 2篇 |
1955年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
外源添加剂对黄贮小麦秸秆产甲烷潜力及微生物群落的影响 总被引:2,自引:0,他引:2
为探讨添加不同外源添加剂对黄贮小麦秸秆产甲烷潜力和微生物群落结构的影响,该研究以小麦秸秆为黄贮原料,添加乙酸(3‰ACE组)和异型发酵乳酸菌复合系(3‰MI1组,6‰MI2组),调整含水率至50%,黄贮65 d后,以黄贮小麦秸秆为厌氧发酵原料,探究发酵过程中的指标性质和微生物群落结构。研究发现黄贮预处理后,发酵系统中的初始挥发性有机酸中的乳酸和乙酸增加、甲烷含量增加、可溶性化学需氧量(sCOD)增加。添加了外源添加剂的ACE组、MI1组、MI2组的累积甲烷产量较干黄小麦秸秆(WS组)提高了4.7%~10.6%,而未添加添加剂的CK组的累积甲烷产量较WS组降低了9%。发酵系统中的主要优势细菌为Bacteroidetes、Firmicutes和Proteobacteria,优势古菌为甲烷鬃菌属Methanosaeta,黄贮预处理改变了发酵系统微生物的群落结构,促进了小麦秸秆的甲烷转化,为木质纤维素的沼气转化提供参考。 相似文献
992.
Nan ZHAO Xixiang YANG Guocheng HUANG Yizhong L Jing ZHANG Yuanyuan FAN Craig F. DRURY Xueming YANG 《土壤圈》2021,31(1):204-213
Long-term fertilization and crop rotation can influence both organic C sequestration as well as the C composition of soils and the more resistant organic C compounds contained in humic acid(HA). This study examined the effects of fertilization and cropping type(monoculture corn(MC) and Kentucky bluegrass sod(KBS) and corn-oat-alfalfa-alfalfa rotation(RC)) on the HA composition of soil from a 52-year field study in southern Ontario, Canada. Humic acid samples were extracted from soil, and elemental analysis, infrared spectroscopy, solid state 13C nuclear magnetic resonance spectra, and electron paramagnetic resonance methods were used to determine the influence of the cropping type on the characteristics of HA. Both fertilization and cropping type affected the chemical characteristics of HA. Fertilization led to a 5.9% increase in C, a 7.6% decrease in O, and lower O/C and(N + O)/C ratios in HA as compared to the corresponding non-fertilized treatments. Rotation resulted in a lower proportion of C(48.1%) and a greater(N + O)/C ratio(0.7) relative to monoculture cropping. Infrared spectroscopy analysis showed that HA contained more C-O groups in fertilized soil than in non-fertilized soil under MC and KBS. Fertilization increased the O-alkyl-C, phenolic-C, and free radical contents of HA relative to non-fertilization treatments. Rotation decreased the aliphatic and carboxyl groups and increased the O-alkyl, carbohydrate, aryl, and phenolic groups and free radicals, relative to MC and KBS. Both long-term crop rotation and fertilization dramatically modified the soil HA composition. Significant relationships were observed between the molecular composition of HA and soil organic C. Hence, humic acid characterization could be used as an indicator of the long-term sustainability of crop management practices. 相似文献
993.
994.
Fuensanta García‐Orenes Antonio Roldn Alicia Morugn‐Coronado Carlos Linares Artemi Cerd Fuensanta Caravaca 《Land Degradation \u0026amp; Development》2016,27(6):1622-1628
Soil microbial populations and their functions related to nutrient cycling contribute substantially to the regulation of soil fertility and the sustainability of agroecosystems. A field experiment was performed to assess the medium‐term effect of a mineral fertilizer and two organic fertilization systems with different nitrogen sources on the soil microbial community biomass, structure, and composition (phospholipid fatty acids, pattern, and abundance), microbial activity (basal respiration, dehydrogenase, protease, urease, β‐glucosidase, and total amount of phosphomonoesterase activities), and physical (aggregate stability) and chemical (total organic C, total N, available P and water‐soluble carbohydrates) properties in a vineyard under semiarid Mediterranean conditions after a period of 10 years. The three fertilization systems assayed were as follows: inorganic fertilization, addition of grapevine pruning with sheep manure (OPM), and addition of grapevine pruning with a legume cover crop (OPL). Both treatments, OPM and OPL, produced higher contents of total organic carbon, total N, available P, water‐soluble carbohydrates, and stable aggregates. The organic fertilization systems increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared with inorganic fertilization. The abundances of fungi and G+ bacteria were increased by treatments OPM and OPL, without significant differences between them. Organic and inorganic fertilization produced similar grapevine yields. The ability of the organic fertilization systems for promoting the sustainability and soil biological and chemical fertility of an agroecosystem under semiarid conditions was dependent of the organic N source. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
995.
为探讨亚热带季风性湿润气候地区降水对土壤呼吸的影响,于2014年选取重庆市缙云山自然保护区内针阔混交林为研究对象,通过人为拦挡和增水方式模拟不同降水输入量对土壤呼吸速率的影响,包括达到土壤含水量的70%(增水70%,70%A),100%(增水100%,100%A),130%(增水130%,130%A)及对照(CK)和零降水(Z)5种情况。结果表明:(1)不同降水处理下土壤呼吸速率日变化均呈单峰变化曲线,并在12:00—14:00之间达到最大值;其年内月变化也为单峰曲线,于8月份达到最大值,12月份达到最小值。(2)适当增水可以提高土壤呼吸速率与10cm深度土壤温度的Pearson相关性,但指数模型的拟合度以对照组最好,减水和过度增水都会减少其相关性;温度敏感性Q10值的变化情况与其相同。(3)土壤呼吸速率与10cm深度的土壤含水量的相关性总体很低,但明显受到土壤水分条件影响,除零降水处理表现为极显著正相关外,对照组几乎不相关,增水处理转为明显的负相关,尤其增水130%后呈显著负相关。(4)在研究地区的自然环境条件下,增水100%时提高了土壤呼吸速率,也扩大了其变化范围,减水明显降低了土壤呼吸速率。 相似文献
996.
C. Piovanelli C. Gamba G. Brandi S. Simoncini E. Batistoni 《Soil & Tillage Research》2006,90(1-2):84-92
Intensive conventional farming and continuous use of land resources can lead to agro-ecosystem decline and increased releases of CO2 to the atmosphere as soil organic matter (OM) decays. The aim of this research was to evaluate the influence of varying types and depths of tillage on microbial biomass, C content, and humification in the profile of a loamy-sandy soil in the Mugello valley, close to the Apennine Mountains, in Italy. Soil samples were collected to depths of 0–10, 10–20, 20–30 and 30–40 cm, in the ninth year following introduction of tillage practices. Highest content of all C forms examined (total, extractable and humified) was found at the 0–10 cm depth with minimum tillage (MT) and ripper subsoiling (RS) and at the 30–40 cm depth with conventional tillage (CT). Humified C decreased with depth in soils under MT and RS. None of the tillage systems showed any difference in total N and microbial biomass C in the upper depths, but concentrations were greater below 20 cm in soils subjected to CT, than other tillage systems. Crop production was similar in all tillage systems. Stratification and redistribution of nutrients were consistent with the well known effects of tillage reduction. Total organic C and its distribution in the profile depended on the tillage system employed. MT and RS can be regarded as excellent conservation tillage systems, because they also sequester C. 相似文献
997.
Anna Piotrowska 《Soil biology & biochemistry》2006,38(3):600-610
Olive mill waste water (OMW), a by-product of the olive mill industry, is produced in large amounts in Mediterranean countries. Olive mill waste water contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. Thus, the use of OMW for soil fertigation is a valuable option for its disposal, provided that its impact on soil chemical and biochemical properties is established. Investigations were performed on the short-term influence of OMW on several chemical and biochemical properties of a soil from a continental semi-arid Mediterranean region (Morocco). The soil was amended with 0, 18 and 36 ml 100 g−1 soil of OMW (corresponding to a field rate of 0, 40 and 80 m3 ha−1, respectively) and changes in various functionally related properties such as microbial biomass, basal respiration, extractable C and N, and soil hydrolases and oxido-reductases activities were measured over time. The variations of the main physical and chemical properties as well as the residual phytotoxicity of OMW amended and non-amended soils as assessed by tomato seed germination tests were also monitored. Temporary and permanent changes in several chemical and biochemical soil properties occurred following OMW application, thus being these properties varied in sensitivity to the applied disturbance. A sudden increase of total organic C, extractable N and C, available P and extractable Mn and Fe contents were measured. Simultaneously, a rapid increase of soil respiration, dehydrogenase and urease activities and microbial biomass (at 14 day incubation) of OMW amended soils occurred. In contrast, the activities of phosphatase, β-glucosidase, nitrate reductase and diphenol oxidase decreased markedly. The soil became highly phytotoxic after OMW addition (large decline of soil germination capability), mainly at 80 m3 ha−1 OMW. After 42 days' incubation, however, a complete recovery of the soil germination capability and a residual phytotoxicity of about 30% were observed with 40 and 80 m3 ha−1 OMW, respectively. These findings indicate that the impact of OMW on soil properties was the result of opposite effects, depending on the relative amounts of beneficial and toxic organic and inorganic compounds present. The toxic compounds contained in OMW most likely counteracted the beneficial effect of organic substrates provided, which promoted the growth and activity of indigenous microorganisms. 相似文献
998.
Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model 总被引:2,自引:0,他引:2
Margit von Lützow Ingrid Kögel‐Knabner Bernard Ludwig Egbert Matzner Heinz Flessa Klemens Ekschmitt Georg Guggenberger Bernd Marschner Karsten Kalbitz 《植物养料与土壤学杂志》2008,171(1):111-124
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool. 相似文献
999.
《Soil Science and Plant Nutrition》2012,58(5):444-450
ABSTRACTThe response of soil organic matter (SOM) to global warming is a crucial subject. However, the temperature sensitivity of SOM turnover remains largely uncertain. Changes in the mineralization of native SOM, i.e., priming effect (PE) may strongly affect the temperature sensitivity of SOM turnover in the presence of global warming. We investigated the direction and magnitude of the PE in a Japanese volcanic ash soil at different temperatures (15°C, 25°C, and 35°C) using a natural 13C tracer (C4-plant, maize leaf) in a short-term (25 days) incubation study. In addition, we evaluated the temperature sensitivity expressed as Q10 value with and without the addition of maize to the soil and their relations to PE. We found that positive PE occurred at each temperature condition and tended to increase with decreased temperature, and these PE results were consistent with the microbial biomass at the end of the incubation period. CO2 emission from control soil (without maize) increased with increasing temperature (Q10 = 2.6), but CO2 emission from the soil with added maize did not significantly change with increasing temperature (Q10 = 1.0). This was caused by the suppression of CO2 emission from the soil with increasing temperature (Q10 = 0.9). On the other hand, soil-originated CO2 emission clearly increased with increasing temperature (Q10 = 3.4) when Q10 values were calculated on the assumption that the temperature and substrate supply increase at the same time (from 25°C). These results suggest that not only the temperature increase but also the labile carbon supply may be important for the temperature sensitivity of Japanese volcanic ash soil. 相似文献
1000.
Abrupt increases in the temperature sensitivity of soil respiration below 0 °C have been interpreted as a change in the dominance of other co-dependent environmental controls, such as the availability of liquid-state water. Yet the relationship between unfrozen water content and soil respiration at sub-zero temperatures has received little attention because of difficulties in measuring unfrozen water contents. Using a recently-developed semi-solid 2H NMR technique the unfrozen water content present in seasonally frozen boreal forest soils was quantified and related to biotic CO2 efflux in laboratory microcosms maintained at temperatures between −0.5 and −8 °C. In both soils the unfrozen water content had an exponential relationship with temperature and was increased by addition of KCl solutions of defined osmotic potential. Approximately 13% unfrozen water was required to release the dependence of soil respiration on unfrozen water content. Depending on the osmotic potential of soil solution, this threshold unfrozen water content was associated with temperatures down to −6 °C; yet if temperature were the predictor of CO2 efflux, then the abrupt increase in the temperature sensitivity of CO2 efflux was associated with −2 °C, except in soils amended with −1500 kPa KCl which did not show any abrupt changes in temperature sensitivity. The KCl-amendments also had the effect of decreasing Q10 values and activation energies (Ea) by factors of 100 and three, respectively, to values comparable with those for soil respiration in unfrozen soil. The disparity between the threshold temperatures and the reductions in Q10 values and activation energies after KCl amendment indicates the significance of unfrozen water availability as an environmental control of equal importance to temperature acting on sub-zero soil respiration. However, this significance was diminished when soils were supplied with abundant labile C (sucrose) and the influences of other environmental controls, allied to the solubility and diffusion of respiratory substrates and gases, are considered to increase. 相似文献