首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
  国内免费   6篇
林业   4篇
农学   3篇
基础科学   1篇
  49篇
综合类   15篇
农作物   5篇
水产渔业   2篇
畜牧兽医   1篇
植物保护   2篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   6篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   18篇
  2011年   8篇
  2010年   3篇
  2008年   5篇
  2007年   1篇
  2006年   7篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有82条查询结果,搜索用时 93 毫秒
61.
Industrial drying of salted fish is an extremely common practice in the Portuguese industry of codfish processing. The present study aims to obtain sorption isotherms of codfish, which will be useful in designing drying processes and prediction of storage conditions for this product. The equilibrium moisture contents (wet basis) were determined for salted codfish at 15, 18, 20, and 23ºC at relative humidities ranging from 40 to 70%. Experiments were also carried out for fresh codfish at the temperature of 20ºC for the same values of relative humidity. The sorption capacity of codfish decreased with an increase in temperature at constant relative humidity. Thirteen models were used to correlate the experimental data analysis of salted codfish: modified BET, Cauri, Chung-Pfost, modified Chung-Pfost, GAB, modified GAB, Halsey, modified Henderson, Kuhn, Oswin, modified Oswin, Smith, and modified Smith. Based on the mean relative percentage deviation, standard error of estimate, randomness of residual, and coefficient of determination, experimental data were well described by all the models. The equilibrium moisture content of salted codfish was best predicted using the modified GAB model, with a coefficient of determination of 0.99.  相似文献   
62.
稻谷水分吸附与解吸等温线拟合模型的选择及其参数优化   总被引:7,自引:0,他引:7  
评价5种最常用的数学模型对中国不同类型的稻谷(籼稻、粳稻、糯稻)吸附与解吸等温线数据的拟合效果,以确定最佳拟合模型及其参数。测定中国不同类型稻谷的吸附与解吸等温线数据,用非线性回归进行统计分析并评价数学模型的拟合效果。结果表明,美国农业工程学会(ASAE)推荐的修正Chung-Pfost模型及其参数并不能与中国稻谷的吸附与解吸等温线数据很好地拟合。Strohman-Yoerger模型最适于拟合籼稻、粳稻的吸附与解吸等温线及糯稻的吸附等温线。而修正Oswin模型最适合拟合糯稻的解吸等温线。Strohman-Yoerger模型拟合籼稻、粳稻吸附等温线的参数C1、C2、C3、C4分别为1.44871、0.20898、7.32345、0.18647;拟合解吸等温线的参数C1、C2、C3、C4分别为2.25071、0.24167、8.32543、0.19035;拟合珍糯吸附等温线的参数为1.55680,0.19179,6.19676,0.17155。修正Oswin模型拟合珍糯的解吸等温线的参数为13.63642,-0.05638,3.60042。本研究为中国的稻谷贮藏与加工提供了基础性数据。  相似文献   
63.
玉米淀粉水分吸附等温线的研究及模型建立   总被引:2,自引:0,他引:2  
为了更好地指导玉米淀粉及其含物制品的干燥、储藏和包装,需要确定温度对玉米淀粉水分吸附特性的影响,及建立一个包含温度和水活度在内的新吸附等温线模型。 根据吸附原理,利用静态调整环境湿度法,测定了玉米淀粉在30℃、45℃和60℃ 3个温度不同水活度下的吸湿和解吸等温线。结果显示玉米淀粉的等温线属于Ⅱ型等温线,在一定的水活度下随着温度的升高吸附能力下降。随着水活度的增加平衡含水率增加,在整个水活度范围内吸附等温线存在一个很明显的滞后作用。用BP神经网络建立了一个新的吸附等温数学模型,分析表明BP神经网络模型不仅包含水活度和温度2个参数而且拟合程度优于其它的数学模型。  相似文献   
64.
澳洲坚果果壳解吸等温线与吸附等温线拟合模型   总被引:1,自引:0,他引:1  
采用非线性回归方法,分析评价了6种模型与试验得到的澳洲坚果果壳在25℃下的解吸等温线与吸附等温线的拟合程度,以确定最佳拟合模型及其参数。结果表明,根据国际理论和应用化学联合会(IUPAC)的分类,解吸等温线与吸附等温线都属于第Ⅰ种类型。解吸吸附滞后现象属于H3型。GAB 模型是最佳的解吸等温线和吸附等温线拟合方程。GAB模型拟合解吸等温线的参数A、B、C分别为9.693、0.605、8.378,拟合吸附等温线的参数分别为9.695、0.635、3.268。  相似文献   
65.
采用静态吸附法,进行磷酸活化法不同剂料质量比(0.5~3.0)及活化温度(400~700℃)条件下制备的互花米草厌氧发酵渣活性炭对镉的吸附性能研究,考察不同初始浓度条件下活性炭对镉的平衡吸附量,旨在以吸附法治理含镉废水,探索吸附机理、影响因素、除镉吸附剂的最佳制备条件以及活性炭物化性质对镉吸附性能的影响。结果表明,镉的吸附性能与活性炭的制备条件有关,随着活化温度的升高,镉的吸附量逐渐增大,主要是因为高温条件下活性炭表面PO34-充当活性位点,促进镉的吸附。当剂料质量比为1.0,活化温度为700℃时,制备出的活性炭对镉的吸附性能最好,其最大吸附量可达38.91mg·g^-1,远远高于商业活性炭。镉的吸附量随着溶液初始浓度的增加而增大,吸附等温线符合Langmuir方程。溶液pH和活性炭表面化学性质是决定镉吸附量大小的决定性因素,当溶液pH在2~4时,各活性炭对镉的吸附能力随pH的增加而增加。本文为含镉废水的处理提供了一种低价高效的方法。  相似文献   
66.
菊花吸湿与解吸等温线拟合模型的选择   总被引:2,自引:0,他引:2  
采用静态法使菊花(Chrysanthemum morifolium Tzvel.et Zhao.)处于10%~95%的相对湿度范围,通过分别测定20℃、30℃、40℃下的吸湿和解吸平衡含水率,确定了菊花的吸湿与解吸等温曲线,并以4个经验方程Henderson-Thompson、Chung-Pfost、Modified-Halsey、Modified-Oswin对测定数据进行了拟和比较。结果表明,Modified-Oswin模型拟合菊花解吸平衡含水率过程效果最好(R2=0.984 4);Henderson-Thompson模型对菊花吸湿平衡含水率的拟合效果最好(R2=0.9988)。  相似文献   
67.
粘土矿物吸附重金属的研究   总被引:2,自引:1,他引:2  
采用蒙脱石和高岭石为吸附剂,研究了其对水中的Cu2+、Pb2+、Zn2+的吸附选择性。结果表明:蒙脱石的吸附容量大于高岭石。粘土矿物对重金属的吸附量随着pH值的增大而增大。在pH4,25℃的条件下,蒙脱石和高岭石对不同重金属离子的吸附容量大小顺序均为:Pb2+>Cu2+>Zn2+。通过吸附等温线的拟合,证实了蒙脱石对重金属离子具有良好的吸附选择性。  相似文献   
68.
The original light‐brown sandy seam filling of pavements in urban areas turns dark and changes its properties by the time due to various inputs of urban dust. Deposited Corg inputs do mostly not have natural characteristics but are man‐made, e.g., diesel dust. Thus, properties of the seam material are not predictable from experiences with forest or agricultural soils. Semiperviously sealed urban areas are sites of contaminant deposition as well as groundwater recharge. For an assessment of the resulting groundwater‐contamination risk in these areas, the properties of the seam material, which influences transport processes, must be known. The aim of this study was to investigate the pore‐system build‐up, which includes size distribution and fractal character in the seam material of urban sites. The investigated samples were taken from pavements adjacent to roads in Berlin and Warsaw. The micropore parameters (nanometer range) were characterized using water‐vapor desorption isotherms, mesopore parameters (micrometer range) were estimated from mercury‐intrusion porosimetry and macropore parameters (millimeter range) from water‐retention curves. Particle density, dry bulk density, and particle‐size distribution were measured using standard methods. Volumes of micro‐ and mesopores as well as particle densities and dry bulk densities correlated with Ctot contents. However, no such relation was found for macropore volumes. Compared to the original sandy seam filling, the altered seam material shows significantly higher Corg contents and higher amounts of micro‐ and mesopores. Therefore, the available water capacity increases by 0.05–0.11 m3 m–3, as compared to the original sandy seam filling. Compared to natural sandy soils having similar Corg contents, the seam material shows similar macropore volumes, but the volume of mesopores and micropores is a few times smaller. That is mainly because of the particulate character of the organic matter.  相似文献   
69.
COD and UV254 of concentrate from reverse osmosis (RO) are removed significantly by powdered activated carbon (PAC) adsorption, which makes the effluent meet the related discharged standard or further reclamation demand. First, main adsorption factors and their levels were selected through orthogonal experiments. Then adsorption isotherms and adsorption kinetics equations about COD and UV254 were obtained by single factor experiments. Finally, adsorption model of COD and UV254 removal were established via response surface methodology (RSM) experiments, in which PAC dosage and adsorption time were acted as independent variables. COD and UV254 predictive removal of RSM model were 69.7% and 82.4% respectively, and the corresponding measured values were 65.3% and 81.8% when the PAC dosage was 0.9 g·L-1 and adsorption time was 50 min. It is shown RSM models can predict COD and UV254 removal very well in the design range, which provides a comprehensive and reliable data basis for engineering application.  相似文献   
70.
Adsorption and desorption of arsenic (As) in the soil are dominant parameters that affect the mobility and bioavailability of arsenic. Batch arsenate adsorption and desorption experiments were conducted using soils collected from three Louisiana, USA, aquaculture ponds representing different crayfish farming and rice cultural practices. Arsenate adsorption behavior in the soils was investigated using Freundlich and Langmuir sorption equations. Results demonstrated that the Langmuir isotherm model was the best fit based on statistical correlation with soil properties governing adsorption, for the entire range of arsenate concentrations for all soils. Adsorption of As(V) was governed by soil physicochemical properties especially Fe and Al oxides, clay and organic matter. Desorption of As(V) was initially fast, but with increasing incubation times desorption occurred progressively slower. Chemical fractionation of arsenic in the soils showed that the most mobile fraction represented 4.74–5.18% of the total arsenic. A part of this mobile fraction could potentially be taken up by rice and enter the food chain, but would require additional research to quantify.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号