首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7801篇
  免费   397篇
  国内免费   1185篇
林业   616篇
农学   799篇
基础科学   2265篇
  1516篇
综合类   2259篇
农作物   239篇
水产渔业   305篇
畜牧兽医   972篇
园艺   185篇
植物保护   227篇
  2024年   52篇
  2023年   136篇
  2022年   268篇
  2021年   277篇
  2020年   302篇
  2019年   352篇
  2018年   264篇
  2017年   355篇
  2016年   431篇
  2015年   363篇
  2014年   461篇
  2013年   520篇
  2012年   585篇
  2011年   562篇
  2010年   449篇
  2009年   435篇
  2008年   353篇
  2007年   423篇
  2006年   395篇
  2005年   317篇
  2004年   247篇
  2003年   231篇
  2002年   190篇
  2001年   190篇
  2000年   174篇
  1999年   142篇
  1998年   131篇
  1997年   114篇
  1996年   117篇
  1995年   82篇
  1994年   81篇
  1993年   73篇
  1992年   79篇
  1991年   59篇
  1990年   49篇
  1989年   33篇
  1988年   40篇
  1987年   26篇
  1986年   12篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1955年   1篇
排序方式: 共有9383条查询结果,搜索用时 15 毫秒
921.
Historically, agriculturally induced CO2 release from soils has contributed to rising levels in the atmosphere. However, by using appropriate management, soils can be turned into carbon sinks. Many of the dryland regions of the world are characterised by degraded soils, a high incidence of poverty and a low capacity to invest in agriculture. Two well-proven soil organic matter models (CENTURY 4.0 and RothC-26 3) were used two explore the effects of modifying agricultural practices to increase soil carbon stocks. The changes to land management were chosen to avoid any significant increase in energy input whilst using technologies that would be available without radically altering the current agricultural methodology. Case studies were selected from dryland farming systems in Nigeria, Sudan and Argentina. Modelling showed that it would be possible to make alterations within the structure of the current farming systems to convert these soils from carbon sources to net sinks. Annual rates of carbon sequestration in the range 0.08–0.17 Mg ha−1 year−1 averaged over the next 50 years could be obtained. The most effective practices were those that maximised the input of organic matter, particularly farmyard manure (up to 0.09 Mg ha−1 year−1), maintaining trees (up to 0.15 Mg ha−1 year−1) and adopting zero tillage (up to 0.04 Mg ha−1 year−1). Verification of these predictions will require experimental data collected from field studies.  相似文献   
922.
This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize (Zea mays L.) and soil organic fertility. Chickpea (Cicer arietinum L) and wheat (Triticum aestivum L) were grown in the winters and mungbean (Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha−1 for wheat and nil or 160 kg ha−1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly (p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.  相似文献   
923.
We investigated C management index (CMI; an indicator of sustainability of a management system and is based on total and labile C) and soil aggregation in medium-textured soils (silt loam and silty clay loam) under different cropping systems as follows: maize-wheat (M-W), rice-wheat (R-W), soybean-wheat (S-W), Guinea grass, and Setaria grass. Field experiments were 6–32 years long and were located in the wet-temperate zone of northwest Himalayas. The plant nutrients were applied through chemical fertilizers (urea, superphosphate, and muriate of potash) with or without organic materials (FYM, wheat straw, and Lantana spp.). The content of total C (CT), labile C (CL), CMI, mean weight diameter (MWD), and aggregate porosity varied significantly under different cropping systems. The range was 1.59 (R-W)–4.29% (Setaria) for CT, 1.23 (R-W)–3.89 mg/kg (Guinea grass) for CL, 52.09 (R-W)–129.77 (Guinea grass) for CMI, 0.90 (R-W)–5.09 (Guinea grass) for MWD, and 41.5 (R-W)–56.8% (S-W) for aggregate porosity. Aggregate porosity was highest (56.8%) under S-W, followed by grasses (50.1–51.2%), and M/R-W (41.5–50.0%). As per these data, (a) continuous use of N alone as urea lowered soil sustainability over control (no fertilizers); (b) use of NPK at recommended rates improved soil productivity over control; (c) the NPK + organic amendments further improved soil sustainability; and (d) the sustainability under different cropping systems followed the order: perennial grasses > soybean-wheat > maize-wheat > rice-wheat.  相似文献   
924.
Agricultural system models are tools to represent and understand major processes and their interactions in agricultural systems. We used the Root Zone Water Quality Model (RZWQM) with 26 years of data from a study near Nashua, IA to evaluate year to year crop yield, water, and N balances. The model was calibrated using data from one 0.4 ha plot and evaluated by comparing simulated values with data from 29 of the 36 plots at the same research site (six were excluded). The dataset contains measured tile flow that varied considerably from plot to plot so we calibrated total tile flow amount by adjusting a lateral hydraulic gradient term for subsurface lateral flow below tiles for each plot. Keeping all other soil and plant parameters constant, RZWQM correctly simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile flow (r2 = 0.71). Yearly crop yield variation was simulated with less satisfaction (r2 = 0.52 for corn and r2 = 0.37 for soybean) although the average yields were reasonably simulated. Root mean square errors (RMSE) for simulated soil water storage, water table, and annual tile flow were 3.0, 22.1, and 5.6 cm, respectively. These values were close to the average RMSE for the measured data between replicates (3.0, 22.4, and 5.7 cm, respectively). RMSE values for simulated annual N loading and residual soil N were 16.8 and 47.0 kg N ha−1, respectively, which were much higher than the average RMSE for measurements among replicates (7.8 and 38.8 kg N ha−1, respectively). The high RMSE for N simulation might be caused by high simulation errors in plant N uptake. Simulated corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] yields had high RMSE (1386 and 674 kg ha−1) with coefficient of variations (CV) of 0.19 and 0.25, respectively. Further improvements were needed for better simulating plant N uptake and yield, but overall, results for annual tile flow and annual N loading in tile flow were acceptable.  相似文献   
925.
We studied microbiological processes in organic P transformations in soils cultivated with conventional and biological farming systems during the 13th and 14th year of different cropping systems. The treatments included control, biodynamic, bioorganic, and conventional plots and a mineral fertilization treatment. Different P fractions were investigated using a sequential fractionation method. Labile organic P, extracted by 0.5 M NaHCO3, was not affected by the farming systems. However, residual organic P remaining in the soil at the end of the sequential fractionation procedure showed that the biodynamic treatment, in particular, led to a modification of the composition of organic P. Labile organic P, organic P extractable in 0.1 M NaOH, and total residual P all showed temporal fluctuations. As total residual P consists of more than 70% organic P, it can be assumed that residual organic P contributed to these variations. This result indicates that chemically resistant organic P participates in short-term accumulation and mineralization processes. All biological soil parameters tested in this study showed significant temporal fluctuations, mainly attributed to differences in climatic conditions between years, but possibly also related to the growth cycle of the crop. The higher values of the biological soil parameters in the biodynamic and bioorganic treatments were explained by the greater importance of manure and the different plant protection strategies. The level of phosphatase activity and mineralization of organic C indicated a higher turnover of organic substrates, and thus of organic P, in the biodynamic and bioorganic treatments. Biological parameters were shown to be critical for assessing the significance of organic P in the soil P turnover.  相似文献   
926.
Concern about the environmental effect of air pollution on areas of high conservation value in the UK has prompted the statutory agencies to initiate an investigation on these areas. For this, critical loads maps have been used together with predicted air pollution data, monitored air pollution data and remotely sensed land cover information within a geographic information system (GIS). Additional information on designated Sites of Special Scientific Interest (SSSI) for England and Wales have also been incorporated. This provides the framework for examining potential impacts to these sites under various current and future scenarios. The approach allows for the investigation of the impacts of individual point sources as well as complete national scenarios. Preliminary results are provided from analysis of a single pollutant (sulphur). These indicate that nationally up to 52% of the area of SSSI's (5000 km2) are at risk from soil acidification. Using this approach it has been possible to apportion the load on any SSSI, thereby enabling the ecological impacts of each point source to be identified. This information can then be used to assess priorities for regulatory controls.  相似文献   
927.
Tillage systems influence soil properties and may influence the availability of applied and mineralized soil N. This laboratory study (20°C) compared N cycling in two soils, a Wooster (fine, loamy Typic Fragiudalf) and a Hoytville (fine, illitic Mollic Epiaqualf) under continuous corn (Zea mays) production since at least 1963 with no-tillage (NT), minimum (CT) and plow tillage (PT) management. Fertilizer was added at the rate of 100 mg 15N kg–1–1 soil as 99.9% 15N as NH4Cl or Ca(NO3)2 and the soils were incubated in leaching columns for 1 week at 34 kPa before being leached periodically with 0.05 M CaCl2 for 26 weeks. As expected, the majority of the 15NO3 additions were removed from both soils with the first leaching. The majority of applied 15NH4+ additions were recovered as 15NO3 by week 5, with the NT soils demonstrating faster nitrification rates compared with soils under other tillage practices. For the remaining 22 weeks, only low levels of 15NO3 were leached from the soils regardless of tillage management. In the coarser textured Wooster soils (150 g clay kg–1), mineralization of native soil N in the fertilized soils was related to the total N content (r2 0.99) and amino acid N (r2 0.99), but N mineralization in the finer textured Hoytville (400 g clay kg–1) was constant across tillage treatments and not significantly related to soil total N or amino acid N content. The release of native soil N was enhanced by NH4+ or NO3 addition compared to the values released by the unfertilized control and exceeded possible pool substitution. The results question the use of incubation N mineralization tests conducted with unfertilized soils as a means for predicting soil N availability for crop N needs.  相似文献   
928.
本试验研究了极低温(-196℃)条件下γ射线辐照大麦干种子和极低温辐照结合热冲击后处理的诱变效应。结果表明:1.与常温条件下辐照相比,极低温条件下辐照及结合热击冲后处理均能显著减轻大麦M_1代的生理损伤和染色体畸变率,其半致死照射量分别提高13kR和30kR;2.M_2代的突变率随照射量升高而增加(r=0.9922~(··)),而与不同温度条件没有关系;3.在极低温条件下用50kR辐照及用60—65kR辐照结合热冲击后处理,与常温条件下用35—40kR辐照相比,没有加重M_1代的辐射损伤,而M_2代的突变率则显著增加,其诱变效率分别平均提高30%和48%。  相似文献   
929.
近30年来城市化进程对北京区域气温的影响   总被引:8,自引:0,他引:8  
分析了20世纪70年代以来北京市气温指数的变化规律,发现其与城市化进程有良好对应关系。并应用主成分分析方法,将影响北京城区及郊县各站气温变化的因子分为区域因子及局地因子。计算表明,城市化带来的热岛效应是导致局地增暖的主要因子,占总增暖比重的47.5%~61.2%。在众多表征城市发展的指标中,气温与人口总量的相关性最好。以上结果有助于深入探讨城市化对区域气候的影响机制。  相似文献   
930.
石羊河流域河流系统生态环境需水量概算   总被引:1,自引:0,他引:1  
通过探讨流域生态环境需水量概念及分析方法,概算了石羊河流域河流基础生态环境需水量、河流输沙需水量、流域湖泊湿地生态环境需水量和下游地下水合理补给需水量。结果表明:石羊河流域河流系统基础生态环境需水量为2.458 6×108m3,约占流域地表水资源来水量的16.93%;输沙需水量为5.30×108m3;流域湖泊湿地需水量为1.53×108m3,下游地下水补给需水量为1.758 6×108m3。生态环境需水量整合后,适宜的生态需水量约占水资源总量的36.49%~48.60%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号