首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17725篇
  免费   995篇
  国内免费   1798篇
林业   898篇
农学   1572篇
基础科学   575篇
  6242篇
综合类   7197篇
农作物   1199篇
水产渔业   459篇
畜牧兽医   1165篇
园艺   459篇
植物保护   752篇
  2024年   176篇
  2023年   482篇
  2022年   725篇
  2021年   790篇
  2020年   758篇
  2019年   838篇
  2018年   657篇
  2017年   1085篇
  2016年   1150篇
  2015年   899篇
  2014年   937篇
  2013年   1330篇
  2012年   1539篇
  2011年   1265篇
  2010年   987篇
  2009年   900篇
  2008年   842篇
  2007年   924篇
  2006年   806篇
  2005年   612篇
  2004年   469篇
  2003年   356篇
  2002年   265篇
  2001年   241篇
  2000年   191篇
  1999年   168篇
  1998年   155篇
  1997年   139篇
  1996年   129篇
  1995年   116篇
  1994年   81篇
  1993年   94篇
  1992年   97篇
  1991年   76篇
  1990年   56篇
  1989年   54篇
  1988年   51篇
  1987年   39篇
  1986年   12篇
  1985年   8篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1962年   3篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Dissolved organic matter (DOM) in soil solution represents a complex mixture of organic molecules and plays a central role in carbon and nitrogen cycling in plant–microbial–soil systems. We tested whether excitation–emission matrix (EEM) fluorescence spectroscopy can be used to characterize DOM and support previous findings that the majority of DOM is of high molecular weight (MW). EEM fluorescence spectroscopy was used in conjunction with MW fractionation to characterize DOM in soil solution from a grassland soil land management gradient in North Wales, UK. Data analysis suggested that three distinct fluorescence components could be separated and identified from the EEM data. These components were identified as being of humic‐like or fulvic‐like origin. Contrary to expectations, the majority of the fluorescence signal occurred in the small MW (<1 kDa) fraction, although differences between soils from the differently managed grasslands were more apparent in larger MW fractions. We conclude that following further characterization of the chemical composition of the fluorophores, EEM has potential as a sensitive technique for characterizing the small MW phenolic fraction of DOM in soils.  相似文献   
52.
本文旨在研究等磷、钾量条件下,化肥减氮及有机肥不同用量配施对水稻产量及土壤养分的影响,试验共设6个处理,分别为T1∶80%N+20%有机肥;T2∶80%N+40%有机肥;T3∶70%N+60%有机肥;T4∶70%N+80%有机肥;T5∶60%化肥+100%有机肥;CK:100%N+0,对水稻生育期株高、群体动态、产量、构产因子以及秋季土壤养分含量进行分析,结果表明:1化肥减氮20%时,不会对水稻造成明显减产,且当有机肥配施量为500kg·mu-2时,水稻籽粒产量最高,为775.19kg·mu-2,比CK增产17.20%;2有机肥的施用能提高水稻基本苗,对水稻穗长有显著提高效果,对空秕率影响较大,对枝梗数影响最小;3化肥减氮+有机肥配施可以提高土壤肥力,增加土壤有机质含量,提高土壤碱解氮、速效钾含量。  相似文献   
53.
Eleven grape cultivars were analysed to explore the variety differences of fresh grape phenolic profiles. The results showed that free phenolics were predominant in grape skins and pulps, and showed the higher antioxidant activities than bound. In 11 cultivars, Muscat Kyoho extracts had the highest total phenolic content in skins(10.525 mg GAE g~(–1) FW) and pulps(1.134 mg GAE g~(–1) FW), and exhibited the highest DPPH radical scavening capacity(EC_(50)=11.7 μg mL~(–1)) and oxygen radical absorbance capacity(ORAC) value(190.57 μmol TE g~(–1) FW) of free phenolic in skin. In addition, the most abundant phenolics in grape skins were found to be flavonoids such as kaempferol in Kyoho skin(541.2 μg g~(–1) FW), rutin, catechin and epicatechin in Muscat Kyoho skin(262.3, 86.3 and 70.0 μg g~(–1) FW, respectively). Furthermore, the principal component analysis showed a strong difference of phenolic profiles with the cultivars, existing forms and distributions. Pearson correlation coefficient analysis showed a significant linear correlation between total phenolic content and antioxidant activity(P0.05). Therefore, both skins and pulps were rich sources of bioactive phenolic compounds, and Muscat Kyoho was the ideal source among all samples.  相似文献   
54.
The stability of soil organic matter (SOM) as it relates to resistance to microbial degradation has important implications for nutrient cycling, emission of greenhouse gases, and C sequestration. Hence, there is interest in developing new ways to quantify and characterise the labile and stable forms of SOM. Our objective in this study was to evaluate SOM under widely contrasting management regimes to determine whether the variation in chemical composition and resistance to pyrolysis observed for various constituent C fractions could be related to their resistance to decomposition. Samples from the same soil under permanent pasture, an arable cropping rotation, and chemical fallow were physically fractionated (sand: 2000-50 μm; silt: 50-5 μm, and clay: <5 μm). Biodegradability of the SOM in size fractions and whole soils was assessed in a laboratory mineralization study. Thermal stability was determined by analytical pyrolysis using a Rock-Eval pyrolyser, and chemical composition was characterized by X-ray absorption near-edge structure (XANES) spectroscopy at the C and N K-edges. Relative to the pasture soil, SOM in the arable and fallow soils declined by 30% and 40%, respectively. The mineralization bioassay showed that SOM in whole soil and soil fractions under fallow was less susceptible to biodegradation than that in other management practices. The SOM in the sand fraction was significantly more biodegradable than that in the silt or clay fractions. Analysis by XANES showed a proportional increase in carboxylates and a reduction in amides (protein) and aromatics in the fallow whole soil compared to the pasture and arable soils. Moreover, protein depletion was greatest in the sand fraction of the fallow soil. Sand fractions in fallow and arable soils were, however, relatively enriched in plant-derived phenols, aromatics, and carboxylates compared to the sand fraction of pasture soils. Analytical pyrolysis showed distinct differences in the thermal stability of SOM among the whole soil and their size fractions; it also showed that the loss of SOM generally involved preferential degradation of H-rich compounds. The temperature at which half of the C was pyrolyzed was strongly correlated with mineralizable C, providing good evidence for a link between the biological and thermal stability of SOM.  相似文献   
55.
The majority of dead organic material enters the soil carbon pool following initial incorporation into microbial biomass. The decomposition of microbial necromass carbon (C) is, therefore, an important process governing the balance between terrestrial and atmospheric C pools. We tested how abiotic stress (drought), biotic interactions (invertebrate grazing) and physical disturbance influence the biochemistry (C:N ratio and calcium oxalate production) of living fungal cells, and the subsequent stabilization of fungal-derived C after senescence. We traced the fate of 13C-labeled necromass from ‘stressed’ and ‘unstressed’ fungi into living soil microbes, dissolved organic carbon (DOC), total soil carbon and respired CO2. All stressors stimulated the production of calcium oxalate crystals and enhanced the C:N ratios of living fungal mycelia, leading to the formation of ‘recalcitrant’ necromass. Although we were unable to detect consistent effects of stress on the mineralization rates of fungal necromass, a greater proportion of the non-stressed (labile) fungal necromass C was stabilised in soil. Our finding is consistent with the emerging understanding that recalcitrant material is entirely decomposed within soil, but incorporated less efficiently into living microbial biomass and, ultimately, into stable SOC.  相似文献   
56.
田政  杨正禹  陆忠杰  罗奔  张茂  董瑞 《草业学报》2023,32(3):142-151
为了解紫花苜蓿在贵州地区的适应性及耐酸铝胁迫机理,以44份紫花苜蓿品种为研究对象,研究紫花苜蓿处于酸铝胁迫下的生理变化,并揭示其生理变化与耐酸铝胁迫间的关系。利用基因与环境互作模型对两个地点1年的紫花苜蓿进行产量分析,筛选出阿尔冈金、新疆大叶苜蓿、Trifecta、Vernal和中牧1号苜蓿5个耐酸铝强适应品种。利用敏感型UC-1465和耐受型阿尔冈金进行酸铝胁迫试验。结果表明:相同处理下,耐受型紫花苜蓿的电导率、相对铝含量、死亡率显著低于敏感型;紫花苜蓿对酸铝胁迫的响应主要通过柠檬酸、苹果酸、乙酸、酒石酸、反丁烯二酸和草酸的显著(P<0.05)增加来体现,其中苹果酸的合成和分泌增多可能是其耐酸铝胁迫的重要原因。  相似文献   
57.
Trees are the dominant species in agroforestry systems, profoundly affecting the performance of understory crops. Proximity to trees is a key factor in crop performance, but rather little information is available on the spatial distribution of yield and yield components of crop species under the influence of trees in agroforestry systems. Also, little information is available on how crop density may be exploited to optimize the yield in such systems. Here we studied the performance of cotton in jujube/cotton agroforestry. Field experiments were conducted in 2012 and 2013 in Hetian, Xinjiang, China. Cotton was grown at a row distance of 60 cm in three densities, 13.5, 18.0 and 22.5 plants m−2 in six m wide paths between tree lines in a jujube plantation. Plant density affected both cotton aboveground dry matter and yield significantly. The highest yield was attained at the intermediate density of 18.0 plants m−2 (20.0 plants m−2 corresponding in sole cotton), lower than the optimal density in sole cotton (25.0 plants m−2). Yield at the lower density was constrained by the low number of bolls per m2 as a direct consequence of the low density, whereas at the high plant density yield was constrained by a lower allocation of assimilates to cotton seed and lint, as a consequence of intraspecific and interspecific competitions. There were strong gradients in yield and yield components in relation to the distance from the tree rows. Leaf area and total dry matter of cotton in rows close to the tree lines were reduced, especially in the rows next to the trees. Moreover, biomass allocation to cotton fruits was reduced in these rows. Competitive influences from the trees on cotton performance extended two rows deep in a six-year old jujube stand, and even three rows deep in a seven-year old stand. Shading effects on cotton yield were compensated by increasing plant density as a result of greater boll numbers per unit ground area. Data from this study help guide the design of optimal plant density of cotton in jujube plantations and give insight in the spatial distribution and dynamics of competitive effects in agroforestry systems in general.  相似文献   
58.
王璐  王海燕  何丽鸿  刘鑫 《土壤通报》2016,(5):1223-1230
以吉林汪清林业局金沟岭林场中41块天然云冷杉针阔混交林样地为对象,采用主成分-聚类分析,结合GIS技术,对该区域土壤肥力质量进行综合评价。结果表明,按主成分-聚类分析结果将41块样地分为4类:第1类土壤肥力质量综合得分为11.17~18.86(优),包括5块样地;第2类土壤肥力质量综合得分为3.01~7.44(良),包括8块样地;第3类土壤肥力质量综合得分为-6.97~1.27(一般),包括24块样地;第4类土壤肥力质量综合得分为-12.40~-9.63(差),包括4块样地。然后采用Arc GIS软件对综合得分进行普通Kriging插值,其标准均方根预测为0.9544,在1的附近,这基本达到插值精度的要求。从生成的研究区土壤肥力质量综合得分空间分布图来看,森林土壤肥力质量由西向东呈现先降低后升高的趋势;由北向南,森林土壤肥力质量变化幅度逐步减小,表明研究区南部土壤肥力质量变化较北部均匀。就研究区的整体土壤肥力质量而言,土壤肥力质量中等以上(优,良,一般)样地数占所研究区样地总数比例为90.24%,表明所研究区森林土壤肥力质量整体处于良好水平。  相似文献   
59.
随着探索提高植物整体光合能力相关研究的不断开展,麦类作物穗部器官等植物非叶绿色器官光合潜力挖掘逐渐得到关注。本研究在成都平原秋播美达、贝勒、莫尼卡、摄政王、泰克和甜燕60等6个品种燕麦,设置遮穗、去颖2个试验处理,比较分析了各品种间穗部特征、穗部光合贡献率、颖片光合贡献率和茎光合物质转移率等差异。结果表明,燕麦穗部器官光合贡献率为28.56%~49.05%,其中甜燕60最高;6个品种燕麦的颖片光合贡献率为11.03%~36.88%,茎光合物质转移率为6.65%~35.81%。燕麦穗部器官对籽实增重表现了较高的光合贡献,当燕麦穗部器官光合受到限制时,燕麦单粒种子重和单穗种子数显著降低,尤其是影响双粒小穗数。  相似文献   
60.
Our 1988 paper, describing the effects of cultivation on microbial biomass and activity in different aggregate size classes, brought together the ‘aggregate hierarchy theory’ and the ‘microbial biomass concept’. This enabled us to identify the relationships between microbial and microhabitat (aggregate) properties and organic matter distribution and explain some of their responses to disturbance. By combining biochemical and direct microscopy based quantification of microbial abundance with enzyme activities and process measurements, this study provided evidence for the role of microbial biomass (especially fungi) in macroaggregate dynamics and carbon and nutrient flush following cultivation. In the last ten years environmental genomic techniques have provided much new knowledge on bacterial composition in aggregate size fractions yet detailed information about other microbial groups (e.g. fungi, archaea and protozoa) is lacking.We now know that soil aggregates are dynamic entities – constantly changing with regard to their biological, chemical and physical properties and, in particular, their influences on plant nutrition and health. As a consequence, elucidation of the many mechanisms regulating soil C and nutrient dynamics demands a better understanding of the role of specific members of microbial communities and their metabolic capabilities as well as their location within the soil matrix (e.g. aggregates, pore spaces) and their reciprocal relationship with plant roots. In addition, the impacts of environment and soil type needs to be quantified at the microscale using, wherever possible, non-destructive ‘in situ’ techniques to predict and quantify the impacts of anthropogenic activities on soil microbial diversity and ecosystem level functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号