首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6270篇
  免费   355篇
  国内免费   788篇
林业   555篇
农学   585篇
基础科学   682篇
  1685篇
综合类   2411篇
农作物   244篇
水产渔业   310篇
畜牧兽医   493篇
园艺   94篇
植物保护   354篇
  2024年   43篇
  2023年   136篇
  2022年   256篇
  2021年   254篇
  2020年   270篇
  2019年   317篇
  2018年   204篇
  2017年   354篇
  2016年   442篇
  2015年   336篇
  2014年   309篇
  2013年   470篇
  2012年   592篇
  2011年   481篇
  2010年   340篇
  2009年   350篇
  2008年   273篇
  2007年   316篇
  2006年   236篇
  2005年   199篇
  2004年   163篇
  2003年   115篇
  2002年   140篇
  2001年   102篇
  2000年   106篇
  1999年   87篇
  1998年   57篇
  1997年   54篇
  1996年   67篇
  1995年   70篇
  1994年   47篇
  1993年   44篇
  1992年   38篇
  1991年   37篇
  1990年   37篇
  1989年   33篇
  1988年   17篇
  1987年   9篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有7413条查询结果,搜索用时 15 毫秒
991.
不同膜孔直径的浑水膜孔灌单向交汇入渗特性   总被引:1,自引:0,他引:1  
根据室内浑水膜孔灌单向交汇入渗试验资料,研究了不同膜孔直径的浑水膜孔灌单向交汇入渗特性;建立了浑水膜孔灌单向交汇入渗参数、单向交汇时间、湿润锋运移参数与不同膜孔直径的关系;提出了不同膜孔直径的浑水膜孔灌单向交汇入渗单位膜孔面积累积入渗量模型、稳定入渗率模型、自由面和交汇面湿润锋运移模型。结果表明:随着膜孔直径增大,单点膜孔累积入渗量逐渐增大,单位膜孔面积累积入渗量逐渐减小;单位膜孔面积累积入渗量的K值随着膜孔直径的增大而减小,α随着膜孔直径的增大而逐渐增大;在膜孔间距一定的情况下,入渗发生交汇的时间随着膜孔直径的增大而减小;在相同入渗时间内,随着膜孔直径的增大,自由面和交汇面垂直和水平湿润锋运移距离都逐渐增加。  相似文献   
992.
有机肥施用对菜地磷素径流流失及磷素表观利用率的影响   总被引:3,自引:1,他引:2  
采用田间小区定位试验(2011—2012年)研究了自然降雨条件下有机肥施用对太湖流域典型蔬菜地磷素径流流失、蔬菜产量及磷素表观利用率的影响。结果表明:冬瓜种植季内菜地径流水量可达1 800~3 528m~3/hm~2,且与降雨量呈显著线性正相关关系。单施化肥(T1)处理条件下,菜地磷素(TP)径流流失量和流失系数分别达3.45kg/hm~2和1.08%,有机肥施用(T2、T3)显著增加TP径流流失量达14.79%和115.36%,而流失系数却降低39.63%(P0.05)和9.11%(P0.05)。从冬瓜产量角度考量,较T1处理而言,有机肥施用(T2、T3)条件下,虽然经济产量和废弃物产量分别提高1.41%~2.88%和4.17%~6.20%,但冬瓜经济系数却稍有下降,但处理间差异不显著。同时,虽然有机肥施用(T2、T3)显著增加冬瓜磷素吸收量达27.27%和46.18%,但磷素表观利用率却显著降低36.79%和61.22%(P0.05)。有机肥施用显著增加菜地磷素盈余,T2、T3处理条件下,盈余量高达238.44~496.28kg/hm~2,分别达T1处理的2.60倍和5.42倍。  相似文献   
993.
典型森林树种对大气颗粒物湿沉降的影响   总被引:3,自引:0,他引:3  
选择典型森林树种油松和侧柏作为研究对象,通过在2种树的冠层不同高度处(8,6,4,2m)布设湿沉降监测装置进行定位监测,比较单位叶面积滞尘量和降水对叶表面颗粒物冲刷率来分析2种树种对于大气颗粒物湿沉降的影响,并分析了树冠层不同高度颗粒物湿沉降以及不同粒径颗粒物湿沉降通量的变化规律,最后通过叶片显微结构来分析2种树种滞尘差异的原因。结果表明:(1)油松单位叶面积的滞尘量高于栓皮栎;降雨对2种树种叶面上大气颗粒物的冲刷率表现为栓皮栎高于油松。(2)油松枝下高2m处滞尘能力最强,大气颗粒物湿沉降通量最小;栓皮栎树冠中部4m处滞尘能力最强,且湿沉降通量最小。(3)油松冠层下部对于10~100μm污染物具有明显的截留作用,而栓皮栎的树冠上部对其具有更明显的截留作用。对于0.4~3μm和3~10μm颗粒物,油松的截留能力要强于栓皮栎。(4)油松和栓皮栎在叶表面显微结构的差异导致两者吸附颗粒物能力不同,油松叶片具有更多的褶皱、开度和密度较高的气孔以及相对较深的沟槽使其具有更强的吸附颗粒物的能力。  相似文献   
994.
Although Ni has been officially recognized as an essential micronutrient for all higher plants since 2004, research on assessing its sufficiency critical levels with different soil tests is missing in the literature. The objective of the study was to determine Ni critical levels in unpolluted cultivated soils utilizing four methods, employing three commonly used calibration techniques. Ten soils with different physical–chemical properties and low Ni content were treated with Ni at rates of 1, 2, 4, and 8 mg kg?1. After equilibration for one month, the soils were analyzed for extractable Ni by four methods, namely DTPA, AB‐DTPA, AAAc‐EDTA, and Mehlich‐3. Response to soil‐applied Ni was assessed by a greenhouse pot experiment, with the untreated and Ni‐treated soils in three replications, using ryegrass (Lolium perenne L.). The aboveground biomass of ryegrass was harvested two months after sowing, dry weight of biomass was measured and relative biomass yield was calculated. Nickel's critical levels were determined employing the: (a) graphical technique of Brown and co‐workers, (b) Mitscherlich–Bray equation, and (c) Cate and Nelson graphical technique. According to the first technique, Ni critical levels were ≈ 2 mg kg?1 for the DTPA and AB‐DTPA methods, and 6.0 and 5.3 mg kg?1 for the AAAc‐EDTA and Mehlich‐3 methods, respectively. Similar levels were obtained by the Mitscherlich–Bray equation. However, the critical levels assessed by the Cate and Nelson technique were lower and ranged from 0.5 to 1.3 mg kg?1 for all four methods. Conclusively, Ni sufficiency critical levels for all four methods are expected to range at levels of a few mg Ni kg?1 of soil. As far as the three calibration techniques are concerned, a distinct boundary between Ni response and non‐response was accomplished by none. However, the fact that 60–74% of the soils were correctly separated into responsive and non‐responsive to added Ni by the graphical technique of Brown and co‐workers suggests that this is the most suitable technique.  相似文献   
995.
温钢  卢克欢  赵悦  刘虹  金虎 《湖北农业科学》2016,(15):3980-3984
从被石油污染的土壤中用蓝色凝胶培养基分离筛选出1株产糖脂类生物表面活性剂的菌株B2。经生理生化试验与16S r DNA序列分析将该菌株鉴定为沙雷氏菌属(Serratia sp.)。经红外光谱与薄层层析分析,结果表明该菌株产生的表面活性剂是一种鼠李糖脂。以发酵液的表面张力为指标,通过正交试验确定最佳发酵条件,即以20 g/L豆油为碳源、5 g/L尿素为氮源、温度34℃、p H 7.0、发酵时间96 h。在此最佳条件下测得表面活性剂的产量为3.746 1 g/L。该菌株所产表面活性剂水溶液在其浓度为临界胶束浓度时的表面张力为180 m N/m。  相似文献   
996.
以罗汉果(Siraitia grosvenorii)花为原料,采用超声波技术从罗汉果花中提取总黄酮,并利用响应面法设计优化了工艺参数。通过对乙醇体积分数、液料比、超声波功率、超声时间等因素进行试验分析,考查了各提取参数对罗汉果花中总黄酮提取率的影响,并在单因素试验的基础上进行响应面试验设计,确定了罗汉果花中总黄酮的最佳提取工艺条件,即乙醇体积分数为67.55%,超声时间43.62 min,超声波功率208.48 W,液料比15∶1(mL∶g),此条件下总黄酮提取率可达到6.537%。  相似文献   
997.
采用平板分离结合刚果红染色法从野生苎麻土壤中分离得到1株果胶酶产生菌Lys-5304。经形态观察和16S r DNA测序鉴定,该菌株鉴定为欧文氏菌(Erwinia amylovora)。通过单因素试验和响应面分析,该菌产果胶酶的最优条件为:葡萄糖3.0 g/100 m L,菜子粕0.2 g/100 m L,接种量1.5 m L,培养基起始p H 8.0,摇床转速180 r/min,发酵周期为72 h,培养温度为37℃。在此条件下,该菌的果胶酶活力达到1 021.33 U/m L,具有一定应用潜力。  相似文献   
998.
[目的]利用响应面法优化超声提取甘草浸膏中甘草酸的工艺条件。[方法]在乙醇浓度、超声波时间及料液比等单因素试验的基础上,根据Box-Behnken的中心组合设计原理采用3因素3水平的响应面分析法优化超声波提取甘草酸的工艺条件。[结果]超声提取甘草酸的最佳工艺条件为乙醇浓度70%、超声波时间30 min、料液比2.8 g/L,在此条件下甘草酸含量为8.34%。[结论]建立了甘草浸膏中甘草酸超声提取最佳工艺条件,为甘草浸膏的精深加工及进一步研究甘草酸在食品和医药领域产业化应用提供理论依据。  相似文献   
999.
以6个代表性大豆品种制备11S球蛋白,研究大豆11S球蛋白结构特性与表面疏水性关系。采用ANS荧光探针法测定表面疏水性,Ellman试剂分析法测定巯基和二硫键含量,激光拉曼光谱和荧光光谱分析空间构象。结论表明,大豆11S球蛋白表面疏水性与α-螺旋含量、β-折叠含量负相关,与β-转角含量、无规则卷曲含量正相关;与拉曼光谱色氨酸费米共振I1360/I1340值负相关,与拉曼光谱酪氨酸费米共振I850/I830值正相关,与暴露酪氨酸残基克分子数正相关,与N暴露N包埋值正相关;与暴露巯基含量、巯基暴露程度正相关,与游离巯基含量、二硫键含量、二硫键构象相关性不显著。  相似文献   
1000.
研究盐胁迫下不同SA浸种条件对西葫芦种子α-淀粉酶活性的影响。研究盐胁迫下不同浓度、温度、时间的SA浸种,并利用响应面软件对浸种条件优化,分析对α-淀粉酶活性的影响。结果表明:浸种温度对α-淀粉酶活性的影响最强,浸种时间对α-淀粉酶活性的影响最弱。单因素实验的分析中种子萌发最适的SA浓度为1.0 mmol/L,浸种的温度为30℃,浸种的时间为18 h。响应面法优化α-淀粉酶活性最大时的参数是:浸种SA浓度1.09 mmol/L,浸种温度28.26℃,浸种时间18.94 h,在此条件下,α-淀粉酶活性的理论值为0.264455 mg/(g·FW·min),与理论值的贴近度为97.98%。在最优浸种条件下α-淀粉酶活性最高,表明在此浸种条件盐胁迫下的西葫芦种子萌发力最好。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号