首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
林业   1篇
农学   3篇
基础科学   1篇
  56篇
综合类   2篇
农作物   1篇
园艺   1篇
植物保护   1篇
  2023年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   4篇
  1993年   1篇
  1989年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
Waterlogging and salinity are reducing the productivity of irrigated agriculture on clay soils in south east Australia. We compared five drainage treatments: (1) undrained control (Control); (2) mole drains (Mole); (3) mole drains formed beneath gypsum-enriched slots (GES) (Mole + GES); (4) shallow pipe drains installed beneath GES (Shallow Pipe); (5) deep pipe drains (Deep Pipe). The experiment was set out on a vertisol and our measurements were made during the growth of an irrigated onion crop.

Over the 3 months before the spring irrigations commenced, the perched water table on the Control was less than 400 mm below the soil surface for 27% of the time, whereas the shallow drainage treatments (Treatments 2, 3 and 4) reduced this time to less than 4%. During the irrigation season, the perched water table on the Mole + GES treatment rose above 400 mm for 3% of the time. The perched water table on the Mole treatment was above 400 mm for 14% of the time, compared with 19% of the time on the Control. The Deep Pipes were less effective in reducing the depth to the perched water table, both before and during the irrigation period.

Mole drains increased the gas-filled porosity above the drains. However, the gas-filled porosity remained below reported levels for optimum root growth. Although the drains effectively drained excess water, and lowered the water table, the hydraulic gradient was insufficient to remove all of water from the macropores. Gypsum enriched slots above the mole drains increased the gas-filled porosity in the slots but the drainable porosity in the undisturbed soil appeared to be inadequate for optimum root growth, even though some drainage occurred near the slots.

Discharge from the shallow drainage treatments averaged 58 mm for each irrigation, and was considerably more than the amount required to drain the macropores. The mole channels were in reasonably good condition at the end of the irrigation season, with at least 70% of the cross-sectional area of the channel open.

Shallow subsurface drains increased onion yield by about 38%. For each day the water table was above 400 mm, the yield declined by 0.23 tonnes per hectare. Farmer adoption of shallow subsurface drainage will depend on the long-term economic benefits (influenced by the longevity of the mole channels and yields response) and the need to develop more sustainable management practices.  相似文献   

62.
为提高砂姜黑土土壤水分的估测精度,本研究以河南省西平县砂姜黑土为研究对象,通过配制不同含水率土壤样本并在室内进行高光谱测量,对土壤样本高光谱数据平滑(SR)、倒对数[LOG(1/R)]、一阶微分(FD)、多元散射校正(MSC)、去包络线(CR)光谱变换后,结合连续投影算法(SPA)识别最佳特征波段,采用偏最小二乘回归(PLSR)、支持向量机回归(SVR)的机器学习方法和堆叠(Stacking)集成学习方法分别构建土壤含水率反演模型。结果表明:经MSC变换后光谱中土壤含水率相关信息增强最多;SPA算法能对砂姜黑土含水率光谱数据进行降维和特征信息提取;经反射光谱MSC变换后由PLSR和SVR集成的Stacking集成模型决定系数最高(R2=0.963)、均方根误差最小(RMSE=1.7)。研究表明,Stacking集成学习模型有效提升了模型的精度和泛化能力,是砂姜黑土含水率最佳反演模型。  相似文献   
63.
The mouldboard plough is the standard tillage implement used with animal power in Kenya. Various designs are currently used indiscriminately in varied soil types and conditions of operation. Their draught characteristics and comparative ability to achieve or maintain desired depths of operation under inherent edaphic conditions are unknown. The significance of variation in working speeds, when different species of draught animals are used, is also unknown. This study was therefore aimed at rating the performance of some common ploughs in order to advise farmers on optimisation of their use. Draught and vertical reaction (suction) on a per-tool basis were measured for four ploughs commonly used in the region; the Victory®, the Rumpstad winding-body® and two types of Rumpstad cylindrical-body® ploughs, using an instrumented rig. The experiments were in Pellic Vertisol, Ferralsol and Nitosol soils under two soil moisture conditions. Draught increased significantly with depth for all four ploughs, hence, regulation of tillage depth is paramount to avoidance of drastic fluctuations. Similarly, vertical reaction increased with depth of ploughing, which implies a more stable operation, hence, when draught can be sustained over an acceptable work duration, it is desirable to set the ploughs to work deeply. Significant speed–depth interactions were also recorded, and these imply that speed is important when operating depth is stochastic as is the case in the dynamics of these ploughs. Overall, the Victory plough had the lowest draught requirement (0.32–1.02 kN) under dry and moist soil conditions, hence, was the best option for use in areas represented by the three soil types in Kenya. Soil-type had a significant effect on mean draught and vertical reaction in the order (Draught, Vertical reaction); Vertisol (1.65 kN, 0.70 kN) > Ferralsol (0.66 kN, 0.44 kN) > Nitosol (0.64 kN, 0.01 kN), and Ferralsol (1.17 kN, 0.71) > Vertisol (1.09 kN, 0.23 kN) > Nitosol (0.49 kN, 0.11 kN) under moist and dry conditions, respectively. These results suggest that the duration of continuous work periods with draught animals should be based on soil-type.  相似文献   
64.
In Burkina Faso, significant amounts of endosulfan are applied to cotton fields; in addition, urban vegetable agriculture is often characterised by high fertiliser inputs, such as urban solid wastes containing heavy metals (e.g., Cu and Cd). Thus, the relevance of surrounding cotton and urban vegetable plots with vetiver (Vetiveria zizanioides) hedges to reduce environmental pollution by micropollutants was investigated using a leaching experiment, with outdoor lysimeters filled with two representative agricultural soils of Burkina Faso: Vertisol and Lixisol. After 6 months, little Cu was found in the leachates (< 0.010% of the applied amount) due to its high adsorption coefficient and its tendency to remain at the soil surface. Despite leachate and bromide recoveries being greater in soils planted with vetiver grass than in the bare soils, smaller amounts of endosulfan and Cd were found in the effluents from the planted soils (0.01% to 0.70% of the applied amount) than in those from the bare soils (0.01% to 1.48% of the applied amount), in agreement with their adsorption coefficients. These results may also be explained by a greater degradation of endosulfan in planted soils compared to bare soils and the absorption of Cd by vetiver. Thus, vetiver may decrease the risk of groundwater contamination, especially for Cd and endosulfan, which are more mobile than Cu. In addition, despite the smaller amounts of endosulfan and Cd measured in the Vertisol leachates (0.01% and 0.04% of the applied amount, respectively) compared to the Lixisol leachates, vetiver was more effective in decreasing the leaching of micropollutants if planted on Lixisol rather than on Vertisol. Further field monitoring is necessary to demonstrate the effectiveness of vetiver under the climatic conditions of Burkina Faso.  相似文献   
65.
A study was conducted for comparative evaluation of atomic absorption spectrophotometry (AAS) and inductively coupled plasma–optical emission spectroscopy (ICP-OES) for determining extractable zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe) in sixty diverse soil samples having a wide range in pH and organic carbon (C). The results were significantly affected by the method of analysis and soil type but generally did not follow a definite trend. Results for extractable Fe in Alfisol samples were significantly greater when using ICP-OES than AAS; and the results for Zn, Cu, and Mn were not significantly different for the two methods. For Vertisol samples, the results for extractable Cu were significantly greater by ICP-OES than by AAS, whereas extractable Fe and Zn were significantly greater by AAS than by ICP-OES, and the results for Mn were not significantly different for the two methods. The results are discussed relative to soil type and differences in soil organic carbon and pH of the samples used in the study.  相似文献   
66.
The effects of two bed widths (1 and 2 m) and four rainfed cotton‐based cropping systems on soil properties, runoff and erosion were evaluated in a Vertisol (1 per cent slope; 21 g per 100 g sand, 12 g per 100 g silt, 67 g per 100 g clay) in subtropical central Queensland, Australia. The cropping systems were: early cotton (Gossypium hirsutum L.) sown between August and October; wheat (Triticum aestivum L.) sown in May, sprayed out and followed by early cotton; wheat allowed to mature, harvested and followed by late cotton sown between October and December; and grain sorghum (Sorghum bicolor (L.) Moench.) followed by cotton. Land preparation was by minimum tillage and traffic was restricted to the furrows between the beds. Rainfall runoff and soil erosion were monitored with water‐height recorders, flumes and troughs. Soil structure was evaluated as air‐filled porosity of oven‐dried soil in the 0–0.15, 0.15–0.30, 0.30–0.45 and 0.45–0.60 m depths. Soil chemical properties measured in the 0–0.15 m depth were organic carbon, pH (in 0.01 M CaCl2), electrical conductivity (EC1:5) of a 1 : 5 soil : water suspension and exchangeable Ca, Mg, K and Na. In comparison with 1 m beds, 2 m beds resulted in lower runoff and soil erosion, lower exchangeable Na, exchangeable sodium percentage and higher EC1:5/exchangeable Na, higher rate of soil organic matter decrease and better soil structure in the 0–0.15 m depth. Runoff and erosion were reduced, and cotton lint yields increased either by cropping systems sown early to intercept most of the seasonal rainfall or by those which produced a high level of ground cover. Soil physical and chemical properties were best, and runoff and erosion lowest with 2 m beds and cropping systems producing a high level of ground cover. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号