首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16516篇
  免费   988篇
  国内免费   1270篇
林业   1594篇
农学   946篇
基础科学   361篇
  6705篇
综合类   6313篇
农作物   558篇
水产渔业   377篇
畜牧兽医   885篇
园艺   371篇
植物保护   664篇
  2024年   164篇
  2023年   524篇
  2022年   657篇
  2021年   646篇
  2020年   650篇
  2019年   733篇
  2018年   584篇
  2017年   945篇
  2016年   1072篇
  2015年   864篇
  2014年   979篇
  2013年   1347篇
  2012年   1541篇
  2011年   1330篇
  2010年   928篇
  2009年   873篇
  2008年   762篇
  2007年   823篇
  2006年   677篇
  2005年   554篇
  2004年   372篇
  2003年   301篇
  2002年   206篇
  2001年   187篇
  2000年   165篇
  1999年   128篇
  1998年   139篇
  1997年   97篇
  1996年   82篇
  1995年   90篇
  1994年   48篇
  1993年   59篇
  1992年   50篇
  1991年   43篇
  1990年   37篇
  1989年   34篇
  1988年   28篇
  1987年   17篇
  1986年   14篇
  1985年   8篇
  1984年   8篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1962年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Abstract

The release of CO2 from fresh soil at medium moisture was examined for 14 days after the application of gamma‐radiation over the range 0.025 ‐ 10 Mrad. All doses stimulated the release of CO2 compared with non‐irradiated soil, but there was no extra yield of gas between 4 and 10 Mrad. Rapid evolution occurred during irradiation and over the next 24 hours, but towards the end of incubation both irradiated and untreated soil produced CO2 at similar rates.

Studies to elucidate the origin of CO2 indicated that the contribution from enzymes was predominant up to 2 Mrad, but at 10 Mrad, 45% of the gas could be formed by radiolytic decarboxylation of soil organic matter. Consequently, heavy irradiation of soil cannot stop production of CO2, and if high concentrations do interfere with the application of radiation to specific soil research investigations, the gas should be displaced or allowed to diffuse from the sample.  相似文献   
142.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   
143.
黄萍  赵雨  牛放  杨菲  张连学 《安徽农业科学》2010,38(14):7305-7307
[目的]优化鹿角托盘总蛋白提取工艺。[方法]以总蛋白得率为评价指标,采用单因素试验和正交试验设计优选最佳提取工艺。[结果]最佳提取工艺为:用含0.3mol/LNaCl,20mmol/LNa2HPO4缓冲液(pH值为9)提取,料液比为1:15,提取时间为24h,提取3次。在此工艺条件下,总蛋白得率达10%以上。[结论]试验优选出的工艺稳定、合理、可行。  相似文献   
144.
柴油车排放尾气严重污染环境并危害人类健康,其净化技术一直是人们研究的热点问题。基于各种活性炭的尘埃吸附性及气体通透性.研究了不同量活性炭在非催化条件下对尾气的吸附机理及行为。试验结果表明:各种活性炭对柴油机尾气排放物吸附作用较为明显:煤质活性炭对于尾气排放物吸附作用要强于椰壳活性炭碳,且对尾气排放降低程度最大、经济性最好用量在400g左右。  相似文献   
145.
利用Gleeble-3800数字控制热/力模拟试验机研究了Q690低碳微合金钢在变形温度850~1150 ℃,应变速率0.01~30 s-1条件下的高温单道次压缩变形行为.建立了基于动态材料模型(DMM)的加工图,结合OM观察变形体微观组织确定了该钢种的高温热变形机制.结果表明:应变量0.7及以下的加工图中包含2个峰区(1 000~1 120 ℃,0.01~0.37 s-1和1 100~1 150 ℃,3.16~30 s-1)和3个加工失稳区(850~900 ℃,0.01~0.32 s-1和850~900 ℃,10~30 s-1以及1 000~1 085 ℃,1~30 s-1).应变量超过0.8的加工图包含2个峰区(1 025~1 100 ℃,0.01~0.38 s-1和1 100~1 150 ℃,3~30 s-1),失稳区为低温(850~900 ℃,0.01~30 s-1)以及应变速率1 s-1以上的中低温度(850~1 100 ℃)范围,在这两个峰区峰值点附近的热变形显微组织为均匀的完全动态再结晶组织,因此,这两个区域均适合Q690钢的热加工变形.  相似文献   
146.
The Foliar Uptake by Squash Plant

The radioactive ash for experimental use, hereafter referred to as “Bikini ash”, was prepared by igniting the heavily contaminated substances on board No. 5 Fukuryu Maru at about 650°C, followed by sifting through a 100 mesh sieve. On ignition some parts of the fission products, particularly iodine, ruthenium and tellurium would have possibly been lost to the air.  相似文献   
147.
The impacts of tillage and cropping sequences on soil organic matter and nutrients have been frequently reported to affect the uppermost soil layers, but there is little published information concerning effects at greater depth. This article reports results on the distribution of soil organic carbon (SOC), active carbon (AC), N, Olsen‐P and extractable K within 100 cm in short (4 yr) and long (16 yr) term experiments under different tillage systems. Short (TT4) and long (TT16) traditional tillage are compared with conservation tillage, reduced (RT16) and non‐tillage (NT4). The results show more accumulation of SOC in the near‐surface under RT16 and NT4 in both experiments compared with traditional tillage. Moreover, greater C content occurs to 40 cm depth in the long‐term experiment. The results demonstrate the importance of time on C accumulation, not only in near‐surface layers but also at greater depths. Active C is an indicator of the increase in soil quality in the long‐term experiment. This trend is only apparent for the first 10 cm in the short‐term experiment. Patterns in N, Olsen‐P and extractable K are similar to that of SOC. However, only extractable K is significantly greater in soil under conservation tillage (RT16 and NT4) after short and long periods. Potassium availability is a good indicator of the changes caused by tillage. Our results indicate that studies of soils at depth could be very useful in long‐term experiments to demonstrate the effect of conservation tillage on C and nutrient distribution.  相似文献   
148.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   
149.
ABSTRACT

Water and rice straw (RS) management practices can potentially affect the accumulation of soil organic carbon (SOC) in agricultural soils. Field experiments were conducted in two consecutive rice-growing seasons (wet and dry) to evaluate SOC stocks under different water (continuous flooding [CF], alternate wetting and drying [AWD]) and RS management practices (RS incorporation [RS-I], RS burning [RS-B], without RS incorporation and burning [WRS]) in a double-cropped paddy field. RS-I under AWD had higher volumetric water content than the same RS management under CF at tillering in both growing seasons. Total SOC was significantly higher under AWD at tillering in both wet and dry seasons and after harvesting in the dry season compared with CF. The same trend was also observed for C:N ratio at tillering and after harvesting in the dry season. RS-B plots had lower SOC stocks than RS-I and WRS plots across most of the measuring periods regardless of the growing seasons. SOC stocks were 33.09 and 39.31 Mg/ha at RS-B and RS-I plots, respectively, in the wet season, whereas the respective values were 21.45 and 24.55 Mg/ha in the dry season. Incorporation of RS enhanced SOC stocks under AWD irrigation, especially in the dry season before planting. Soil incorporation of RS in combination with AWD could be a viable option to increase SOC stocks in the double-cropped rice production region as it is strongly linked with soil fertility and productivity. However, the environmental consequences of RS incorporation in irrigated lowland rice production system should be taken into consideration before its recommendation for paddy field on a large scale.  相似文献   
150.
Abstract

Mineralization is the dominant process controlling soil-solution P in the Spodosols of the southeastern United States. Pine trees growing in these soils are typically colonized by ectomycorrhizal (EM) fungi that are known to produce phosphatases. Little, however, is known of the dynamics of EM short roots or phosphatase activity in tree plantations. To address this question, short root densities, EM morphotypes, and associated surface acid phosphomonoesterase in a 12-year-old Pinus elliottii plantation in northern Florida were evaluated. The density of total (living and dead) short roots changed little from February through June, with a mean of 7.6 cm3 soil. The majority of the short roots, however, were inactive or dead with only 14 to 38% appearing viable upon visual inspection. The majority of the viable short roots were mycorrhizal. The most abundant morphotypes were formed by Cenococcum and Thelephora but these had low phosphatase activity. In contrast, less frequently observed morphotypes had substantially higher rates of enzyme production and these may play an important role in sustainable P nutrition of plantation trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号