首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8353篇
  免费   317篇
  国内免费   741篇
林业   331篇
农学   598篇
基础科学   125篇
  3183篇
综合类   3009篇
农作物   570篇
水产渔业   162篇
畜牧兽医   981篇
园艺   262篇
植物保护   190篇
  2024年   29篇
  2023年   121篇
  2022年   140篇
  2021年   201篇
  2020年   224篇
  2019年   221篇
  2018年   166篇
  2017年   372篇
  2016年   454篇
  2015年   368篇
  2014年   409篇
  2013年   704篇
  2012年   727篇
  2011年   651篇
  2010年   575篇
  2009年   523篇
  2008年   463篇
  2007年   550篇
  2006年   437篇
  2005年   308篇
  2004年   242篇
  2003年   218篇
  2002年   139篇
  2001年   118篇
  2000年   143篇
  1999年   88篇
  1998年   101篇
  1997年   98篇
  1996年   105篇
  1995年   86篇
  1994年   60篇
  1993年   67篇
  1992年   68篇
  1991年   47篇
  1990年   50篇
  1989年   48篇
  1988年   31篇
  1987年   20篇
  1986年   14篇
  1985年   9篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1956年   1篇
排序方式: 共有9411条查询结果,搜索用时 15 毫秒
111.
为研究2009年甲型H1N1流感病毒的NS1蛋白的核仁定位情况,采用RT-PCR对其NS1基因进行了扩增,将其克隆至PEGX-KG载体,构建重组质粒KG-NS1,转化大肠杆菌BL21,IPTG诱导表达重组蛋白.然后采用GST柱亲和层析方法纯化NS1重组蛋白,免疫家兔来制备多抗,Western blot检测抗体.通过间接免疫荧光对表达不同长度NS1 (NS1-219、NS1-230、NS1-237)的3种重组流感病毒进行了核仁定位的研究,3种重组毒的NS1蛋白存在于细胞核和细胞质,但都不能定位于核仁,说明NS1蛋白的截短与否并不影响其核仁定位,其生物学意义有待于进一步研究.  相似文献   
112.
113.
为了观察不同梯度大豆抗营养因子(Antinutritionalfactors、简称ANFs)对不同生理阶段的生长蛋鸡的影响,本试验采用480只海兰褐蛋用雏鸡,以熟豆饼日粮为对照,从3或9周开始给饲3个水平的生大豆日粮(4%,9%和13%),每期每个日粮4个重复。在3~8周和9~18周观察雏鸡的采食量,日增重和饲料效率。在第8和17周分别测定各组的粗蛋白质和干物质的代谢率。并于8、13和18周末每个重复随机抽取试鸡两只屠宰,观察小肠内胰蛋白酶活性的变化。结果表明,3个水平的大豆ANFs对育雏期雏鸡的增重没有影响,育成期对照组的增重明显高于采食生大豆组(P<0.05),大豆ANFs使饲料效率降低,但对氮和干物质的代谢影响不显著;8、13和18周龄雏鸡小肠内胰蛋白酶活性亦无显著变化。  相似文献   
114.
115.
Susceptibility to IVM (IVM) of “strain A” Haemonchus contortus which had been exposed to IVM four times over a 2-year period was compared to IVM susceptibility of “strain C” H. contortus which had no prior field exposure to IVM, by in vivo and in vitro methods. In vivo, the percentage reduction in faecal egg counts (FEC) and the total worm counts (TWC) were compared between control animals (lambs and kids) and animals treated with low dose IVM (20 μg/kg). In vitro susceptibility to IVM was evaluated by larval migration inhibition (LMI) after the two strains of H. contortus were exposed to different concentrations of IVM. The dose response, measured as the proportion of larvae inhibited from migrating, was used to estimate LD50. Although differences in response to IVM in the in vivo determinations were not significant, “strain A” H. contortus had a significantly higher LD50 than “strain C” in the LMI assay. Coincident with the conduct of the in vivo experiment, it was observed that “strain A” H. contortus established and survived better than “strain C” in the control lambs.  相似文献   
116.
A virus, isolated from faba bean (Vicia faba) obtained from Algeria, was readily recognized as a tobravirus by its particle sizes and morphology. Pea (Pisum sativum) and French bean (Phaseolus vulgaris) characteristically reacted to the isolate like pea early-browning virus (PEBV), but faba bean,Antirrhinum majus, Nicotiana rustica, andN. tabacum reacted with line-pattern symptoms which were unusually brilliant on theNicotiana species. In electronmicroscope decoration tests, the isolate did not react with an antiserum to the Dutch type strain of PEBV, but with one to the broad bean yellow band (BBYB) serotype from Italy. It resembles this serotype in reaction on faba bean, but seems to differ appreciably onN. rustica, N. tabacum, andPetunia hybrida. It is described as a deviant isolate of the BBYB serotype of PEBV.All thirteen faba-bean genotypes tested were found to be susceptible to the Algerian isolate and two Dutch type strain isolates of the virus, and to react with erratic line-pattern symptoms to the Algerian isolate only. All ten genotypes of chickpea (Cicer arietinum) tested reacted hypersensitively, and four out of ten genotypes of lentil (Lens culinaris) were susceptible to the virus but reacted differentially to the three isolates. Seed transmission of PEBV, including the new isolate, in faba bean is confirmed (9% for the Algerian isolate, and over 45% for one of the Dutch type strain isolates), and seed transmission of the virus in a non-legume (N. rustica, 4%) is herewith first reported. This is the first report on the occurrence of the BBYB serotype of PEBV outside Italy, and of PEBV outside Morocco in North Africa.  相似文献   
117.
放牧强度对新麦草土壤氮素分配及其季节动态的影响   总被引:4,自引:0,他引:4  
白可喻  韩建国 《草地学报》1999,7(4):308-318
通过不同放牧处理对新麦草人工草地土壤氮素分配及其在生长期间的动态研究。结果表明,0~30cm土层全氮量月均值的顺序为对照〉重牧〉轻牧〉中牧(P〈0.01)。放牧强度对铵未形成显著影响(P〉0.05)。0~30cm土层随着放牧强度的增加,硝态氮量逐渐增加。放牧区净可矿化氮量大于对照区,其中以中度放牧区最高。0~30cm土层土壤微生物生物量氮的顺序为重牧〉对照〉中牧〉轻牧(P〈0.05)。  相似文献   
118.
Pomegranate fruit is an important source of potentially healthy bioactive compounds and mineral nutrients. Changes in total phenolic compound, concentrations, and levels of macronutrients (P, K, N, Mg, Ca and Na) and micronutrients (Zn, Cu, Mn, Fe and B) in arils and peel of pomegranate fruit were recorded from 10 days after full bloom until harvest. Total phenolics levels increased at early stage of growth both in peel and arils of fruit, but thereafter generally decreased during maturation and reached to 3.70 and 50.22 mg g−1 of dry weight in arils and peel, respectively, at harvest. The amount of total phenolics in peel was markedly higher than arils of pomegranate fruit. The concentration of most elements in arils and peel decreased during fruit growth and development. At harvest the relative order of concentration of macronutrients both in arils and peel was K > N > Ca > P > Mg > Na. The concentration of most micronutrients was greater in the arils than in the peel especially in early season. The relative order of concentration of micronutrients in arils was B > Fe > Zn > Cu > Mn. The accumulation of all the macro- and microelement within the fruit also increased during fruit growth and development. These results provide important data on total phenolics and macro- and micronutrient changes during fruit growth and development, emphasizing that pomegranate fruit can be a good source of bioactive compounds and minerals.  相似文献   
119.
Developmental changes in pineapple (Ananas Comosus (L.) Merrill) fruit acidity was determined for a ‘Smooth Cayenne’ high acid clone PRI#36-21 and a low acid clone PRI#63-555. The high acid clone gradually increased in fruit acidity from 1.4 meq/100 ml 6 weeks from flowering, and peaked a week before harvest at ca 10 meq/100 ml. In contrast, the low acid clone increased in acidity 6 to 8 weeks after flowering, peaked 15 weeks after flowering at ca. 9 meq per/100 ml and then sharply declined in 2 weeks to 6 meq/100 ml. The increased in total soluble solids (TSS) of the low acid clone began 6 weeks after flowering and for the high acid clone at 12 weeks after flowering. The increase in titratable fruit acidity (TA) paralleled the changes in the citric acid content of both clones. Citric acid content increased from less than 1 mg/g at 6 weeks after flowering to 6 to 7 mg/g, 9 weeks later. The malic acid concentration in both clones varied between 3 and 5 mg/g and showed no marked changes just before harvest. The developmental changes in fruit potassium were significantly correlated with fruit acidity and fruit total soluble solids in both the high and low acid clones. Developmental changes in acid-related enzymatic activities showed an increase in citrate synthase (EC 4.1.3.7) activity that occurred a week before harvest, coincided with the peak in citric acid in the high acid clone. An increase in aconitase (ACO, EC 4.2.1.3) activity was observed just before harvest as the decline in acidity occurred in the low acid clone. The activities of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), malate dehydrogenase (MDH, EC 1.1.1.37) and malic enzyme (ME, EC 1.1.1.40) did not parallel any changes in fruit acidity. The results indicated that the change in pineapple fruit acidity during development was due to changes in citric acid content. The major difference in acid accumulation occurred in the low acid clone just before harvest when acidity declined by one-third. The activities of citrate synthase and aconitase possibly played a major role in pineapple fruit acidity changes.  相似文献   
120.
Greenhouse-grown hot pepper was used to investigate the effect of Time-Space deficit irrigation (TSDI), a newly developing irrigation technique based on regulated deficit irrigation (RDI) and partial rootzone drying (PRD), by measuring plant growth, yield and irrigation water use efficiency. The treatments consisted of factorial combinations of three factors, organized following an orthogonal L9 (3)4 test design with four growing stages. Three irrigation strategies (conventional furrow irrigation with full-water when soil water content was lower by 80% of field capacity (F), conventional furrow irrigation with 50% of full-water (D) and alternate furrow irrigation with 50% of full-water (P)) as the main plot factor were applied to select the optimum irrigation parameter at different stages of crop development, the treatment in which irrigation water was applied to both sides of root system when soil water content was lower by 80% of field capacity during all stages was considered as control (FFFF). Water consumption showed some significant effect of irrigation treatment during the growing period of different drought stress patterns application, and therefore decreased in these treatments to a level around 54.68–70.33% of FFFF. Total dry mass was reduced by 1.17–38.66% in TSDI treatments compared to FFFF. However, the root–shoot ratio of FFFF was lower than other treatments and the differences from FFFF and other TSDI treatments were statistically significant. The highest total fresh fruit yield (19.57 T ha−1) was obtained in the FFFF treatment. All deficit irrigations increased the water use efficiency of hot pepper from a minimum of 1.33% to a maximum of 54.49%. At harvest, although there was difference recorded as single fruit weight and single fruit volume were reduced under the TSDI treatments, total soluble solids concentration of fruit harvested under the water-deficit treatments were higher compared to FFFF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号