首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18591篇
  免费   893篇
  国内免费   1430篇
林业   1209篇
农学   1099篇
基础科学   531篇
  9416篇
综合类   6156篇
农作物   939篇
水产渔业   30篇
畜牧兽医   914篇
园艺   401篇
植物保护   219篇
  2024年   161篇
  2023年   334篇
  2022年   407篇
  2021年   474篇
  2020年   443篇
  2019年   501篇
  2018年   388篇
  2017年   663篇
  2016年   870篇
  2015年   785篇
  2014年   957篇
  2013年   1018篇
  2012年   1273篇
  2011年   1504篇
  2010年   1133篇
  2009年   1263篇
  2008年   1220篇
  2007年   1254篇
  2006年   1106篇
  2005年   892篇
  2004年   615篇
  2003年   537篇
  2002年   331篇
  2001年   276篇
  2000年   281篇
  1999年   272篇
  1998年   254篇
  1997年   250篇
  1996年   244篇
  1995年   208篇
  1994年   168篇
  1993年   180篇
  1992年   154篇
  1991年   110篇
  1990年   147篇
  1989年   74篇
  1988年   65篇
  1987年   51篇
  1986年   18篇
  1985年   9篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   7篇
  1963年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
上海郊区水稻精准施肥效益研究   总被引:1,自引:1,他引:0  
以沪郊10.7万hm2优质粮田为研究区,在地理信息平台ARCGIS上,利用GPS定位网格化采集土壤样品2 817个,建立12个水稻高产示范基地。试验结果表明,应用土壤快速测定方法为当季水稻进行推荐施肥,水稻平均增产31.5 kg/666.7 m2,增幅为6.04%。  相似文献   
62.
Benefits of organic farming on soil fauna have been widely observed and this has led to consider organic farming as a potential approach to reduce the environmental impact of conventional agriculture. However, there is still little evidence from field conditions about direct benefits of organic agriculture on soil ecosystem functioning. Hence, the aims of this study were to compare the effect of organic farming versus conventional farming on litter decomposition and to study how this process is affected by soil meso- and macrofauna abundances. Systems studied were: (1) organic farming with conventional tillage (ORG), (2) conventional farming with conventional tillage (CT), (3) conventional farming under no-tillage (NT), and (4) natural grassland as control system (GR). Decomposition was determined under field conditions by measuring weight loss in litterbags. Soil meso- and macrofauna contribution on decomposition was evaluated both by different mesh sizes and by assessing their abundances in the soil. Litter decomposition was always significantly higher after 9 and 12 months in ORG than in CT and NT (from 2 to 5 times in average), regardless decomposer community composition and litter type. Besides, mesofauna, macrofauna and earthworm abundances were significantly higher in ORG than in NT and CT (from 1.6 to 3.8, 1.7 to 2.3 and 16 to 25 times in average, respectively for each group). These results are especially relevant firstly because the positive effect of ORG in a key soil process has been proved under field conditions, being the first direct evidence that organic farming enhances the decomposition process. And secondly because the extensive organic system analyzed here did not include several practices which have been recognized as particularly positive for soil biota (e.g. manure use, low tillage intensity and high crop diversity). So, this research suggests that even when those practices are not applied, the non-use of agrochemicals is enough to produce positive changes in soil fauna and so in decomposition dynamics. Therefore, the adoption of organic system in an extensive way can also be suggested to farmers in order to improve ecosystem functioning and consequently to achieve better soil conditions for crop production.  相似文献   
63.
By burrowing galleries and producing casts, earthworms are constantly changing the structure and properties of the soils in which they are living. These changes modify the costs and benefits for earthworms to stay in the environment they modify. In this paper, we measured experimentally how dispersal behaviour of endogeic and anecic earthworms responds to the cumulative changes they made in soil characteristics. The influence of earthworm activities on dispersal was studied in standardised mesocosms by comparing the influence of soils modified or not modified by earthworm activities on earthworm dispersal rates.The cumulative use of the soil by the earthworms strongly modified soil physical properties. The height of the soil decreased over time and the amount of aggregates smaller than 2 mm decreased in contrast to aggregates larger than 5 mm that increased. We found that: (i) earthworm activities significantly modified soil physical properties (such as bulk density, soil strength and soil aggregation) and decreased significantly the dispersal rates of the endogeic species, whatever the species that modified the soil; (ii) the decreasing in the dispersal proportion of the endogeic species suggests that the cost of engineering activities may be higher than the one of dispersal; (iii) the dispersal of the anecic species appeared to be not influenced by its own activities (intra-specific influences) or by the activities of the endogeic species (inter-specific influences). Overall these results suggest that the endogeic species is involved in a process of niche construction, which evolved jointly with its dispersal strategy.  相似文献   
64.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation.  相似文献   
65.
In agricultural production, there is contradiction between the cost and accuracy of detection during the course of acquiring soil water content (θ) online. This conflict is one of the core issues of automatic water-saving irrigation technology in agriculture. At the same time, capacitive soil moisture sensor (CSMS) has received considerable attention, for it can acquire θ with low cost and high precision, and meet the application requirements of wireless sensor network (WSN). But CSMS is vulnerable to the soil temperature (Ts) and salinity (Ss) in the measurement process. Therefore, this study took EC-5 sensor for example to establish water detection calibration models of soil temperature and salinity for single sensor, using Least Squares Support Vector Machines on MatLAB (LS-SVMlab) as the tool. On this basis, we explored the spatial variability of Ts and Ss, and then a method, which could be used to calibrate the output signals of sensors in multi-point network, was proposed based on the information-sharing (Ts or Ss) technology of WSN. Through laboratory experiment, we effectively reduced the impact of soil temperature and salinity on the single sensor. In example analysis, we investigated the detection precision and costs under different information-sharing radiuses (r). And the results indicated that the method we proposed based on the information-sharing technology of WSN could successfully calibrate the influence of soil temperature and salinity on sensors in multi-point network, and it was an efficacious approach to determine the balance between the calibration accuracy of moisture sensor and the investment of agricultural production. For example, while the calibration precision of soil temperature and salinity is respectively 1%, the costs can be reduced by 30%.  相似文献   
66.
In West African savanna-woodland, the use of prescribed burning as a management tool has ecological implications for the soil biota. Yet, the effects of fire on soil inhabiting organisms are poorly understood. The aim of this study was to examine the responses of soil macro-invertebrates to early fires in a Sudanian savanna-woodland on a set of experimental plots subject to different fuel load treatments. The abundance of major macro-invertebrate taxa and functional groups, and taxon richness were quantified in soil cores collected from three different soil layers before and immediately after burning. The results indicated that, overall, there was substantial spatial and temporal variation in the composition of macro-invertebrate assemblages. The immediate effects of fire were to reduce total invertebrate numbers and numbers of many invertebrate groups dramatically. This is probably due to the fact that many of the surface-dwelling macrofauna perished as a result of less favorable microclimate due to fire, diminished resources, or migrate to safer environments. Fuel load treatment did not affect the community taxonomic richness or abundance of the soil-dwelling fauna. Furthermore, annual changes in community composition were more pronounced at the burnt site than in the control. This could be related to the inter-annual difference in precipitation pattern recorded during the two-year study period at our site. Since soil macrofauna population declines in fire-disturbed areas, increasing fire prevalence may jeopardize the long-term conservation of fire sensitive macrofauna groups. Special fire management attention is therefore recommended with due consideration to the type of burning and fuel properties to avoid the detrimental effects of intense fire affecting the resilience of savanna soil macrofauna species.  相似文献   
67.
Extreme droughts and heat waves due to climate change may have permanent consequences on soil quality and functioning in agroecosystems. During November 2010 to August 2011, the Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, received only 39.6 mm of precipitation (vs. the historical avg. of 373 mm) and experienced the hottest summer since record keeping began in 1911. Several enzyme activities (EAs) important in biogeochemical cycling were evaluated in two soils (a loam and a sandy loam at 0–10 cm) with a management history of monoculture (continuous cotton) or rotation (cotton and sorghum or millet). Samplings occurred under the most extreme drought and heat conditions (July 2011), after precipitation resulted in a reduction in a drought severity index (March 2012), and 12 months after the initial sampling (July 2012; loam only). Eight out of ten EAs, were significantly higher in July 2011 compared to March 2012 for some combinations of soil type and management history. Among these eight EAs, enzymes key to C (β-glucosidase, β-glucosaminidase) and P cycling (phosphodiesterase, acid and alkaline phosphatases) were significantly higher (19–79%) in July 2011 than in March 2012 for both management histories regardless of the soil type (P > 0.05). When comparing all sampling times, the activities of alkaline phosphatase, aspartase and urease (rotation only) showed this trend: July 2011 > March 2012 > July 2012. Activities of phosphodiesterase, acid phosphatase, α-galactosidase, β-glucosidase and β-glucosaminidase were higher in July 2011 than July 2012 in at least one of the two management histories. Total C was reduced significantly from July 2011 to March 2012 in the rotation for both soils. Only the activities of arylsulfatase (avg. 36%) and asparaginase showed an increase from July 2011 to March 2012 for both soil types, which may indicate they have a different origin/location than the other enzymes. EAs continued to be a fingerprint of the soil management history (i.e., higher EAs in the rotation than in monoculture) during the drought/heat wave. This study provided some of the first evidence of the adverse effects of a natural, extreme drought and heat wave on soil quality in agroecosystems as indicated by EAs involved in biogeochemical cycling.  相似文献   
68.
通过植物-土壤反馈试验,研究连作及轮作土壤微生物菌群对黄瓜幼苗生长和土壤酶活性的影响。结果表明,轮作土壤微生物处理黄瓜植株鲜质量、叶绿素含量、土壤中性磷酸酶、蔗糖酶活性显著高于连作土壤微生物处理;连作及轮作土壤微生物处理增加了黄瓜幼苗干质量、鲜质量、叶绿素含量及总叶面积,显著提高了土壤中性磷酸酶、蔗糖酶、脲酶活性。综上,连作及轮作土壤微生物菌群对黄瓜幼苗生长均产生正反馈作用,并且轮作土壤微生物的正反馈作用大于连作土壤微生物。  相似文献   
69.
We investigated the effect of soil microclimate on the structure and functioning of soil microbial communities in a Mediterranean Holm-oak forest subjected to 10 years of partial rain exclusion manipulations, simulating average drought conditions expected in Mediterranean areas for the following decades. We applied a high throughput DNA pyrosequencing technique coupled to parallel measurements of microbial respiration (RH) and temperature sensitivity of microbial respiration (Q10). Some consistent changes in the structure of bacterial communities suggest a slow process of community shifts parallel to the trend towards oligotrophy in response to long-term droughts. However, the structure of bacterial communities was mainly determined by short-term environmental fluctuations associated with sampling date (winter, spring and summer) rather than long-term (10 years) shifts in baseline precipitation. Moreover, long-term drought did not exert any chronic effect on the functioning of soil microbial communities (RH and Q10), emphasizing the functional stability of these communities to this long-term but mild shifts in water availability. We hypothesize that the particular conditions of the Mediterranean climate with strong seasonal shifts in both temperature and soil water availability but also characterized by very extreme environmental conditions during summer, was acting as a strong force in community assembling, selecting phenotypes adapted to the semiarid conditions characterizing Mediterranean ecosystems. Relations of climate with the phylogenetic structure and overall diversity of the communities as well as the distribution of the individual responses of different lineages (genera) to climate confirmed our hypotheses, evidencing communities dominated by thermotolerant and drought-tolerant phenotypes.  相似文献   
70.
[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events.[Method] Three chronosequences were selected for paired comparisons.Soil samples were collected at six depths with a 10 cm increment.Analysis of variance with general linear model and regression was performed for statistical analysis.[Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated,soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range,better than sole clay content.Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon.Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions,respectively.Accordingly,clay + silt content explained 47%-65% and 46%-70%.[Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation.For seasonally frozen soils with wider textural ranges,it is robust to adapt clay + silt content as dependent variable and exponential function.The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号