全文获取类型
收费全文 | 6843篇 |
免费 | 266篇 |
国内免费 | 387篇 |
专业分类
林业 | 598篇 |
农学 | 696篇 |
基础科学 | 95篇 |
805篇 | |
综合类 | 3214篇 |
农作物 | 619篇 |
水产渔业 | 87篇 |
畜牧兽医 | 743篇 |
园艺 | 470篇 |
植物保护 | 169篇 |
出版年
2024年 | 63篇 |
2023年 | 73篇 |
2022年 | 125篇 |
2021年 | 132篇 |
2020年 | 135篇 |
2019年 | 136篇 |
2018年 | 88篇 |
2017年 | 168篇 |
2016年 | 259篇 |
2015年 | 241篇 |
2014年 | 329篇 |
2013年 | 333篇 |
2012年 | 499篇 |
2011年 | 545篇 |
2010年 | 520篇 |
2009年 | 616篇 |
2008年 | 485篇 |
2007年 | 582篇 |
2006年 | 456篇 |
2005年 | 329篇 |
2004年 | 254篇 |
2003年 | 169篇 |
2002年 | 106篇 |
2001年 | 98篇 |
2000年 | 87篇 |
1999年 | 90篇 |
1998年 | 81篇 |
1997年 | 56篇 |
1996年 | 72篇 |
1995年 | 64篇 |
1994年 | 62篇 |
1993年 | 52篇 |
1992年 | 42篇 |
1991年 | 27篇 |
1990年 | 39篇 |
1989年 | 35篇 |
1988年 | 24篇 |
1987年 | 14篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1956年 | 1篇 |
排序方式: 共有7496条查询结果,搜索用时 11 毫秒
31.
株高作为小麦育种的重要指标,对产量具有较大的影响。为进一步挖掘小麦株高的数量性状位点(quantitative trait loci,QTL),本研究以扬麦12和偃展1号杂交得到的包含205个家系的重组自交系(recombinant inbred lines,RIL)群体为材料,利用小麦55K SNP芯片构建高密度遗传图谱,结合 3年共6个环境的表型数据对株高性状进行QTL定位分析。结果表明,在染色体2B(1)、4B(1)、4D(1)、5A(1)、5B(1)和7D(2)上共检测到7个与株高相关的QTL。QPh.yaas-4B、QPh.yaas-5A和QPh.yaas-7D.1的矮秆效应来源于扬麦12,其余4个QTL的矮秆效应来源于偃展1号。在6个环境下都能检测到的位点是QPh.yaas-4B和QPh.yaas-4D,对株高的贡献率分别14.50%~24.09%和19.01%~29.80%,经过比对发现,这2个QTL分别是Rht1和Rht2。QPh.yaas-5A在5个环境下被检测到,对株高的贡献率为3.29%~5.36%;QPh.yaas-2D和QPh.yaas-7D.2在4个环境中均被检测到,对株高的贡献率分别为3.45%~6.14%和3.16%~4.10%;QPh.yaas-5B和QPh.yaas-7D.1分别在2个和3个环境中被检测到,对株高的贡献率分别是2.27%~5.09%和2.72%~4.82%。QTL比较分析后发现,QPh.yaas-7D.1和QPh.yaas-7D.2可能是新的株高位点。研究Rht-B1和Rht-D1对千粒重、穗长和穗粒数的效应,发现Rht-B1位点对这些农艺性状无显著效应,Rht-D1位点仅对千粒重有显著效应,其株高增效等位变异可显著增加千粒重。在自然群体中验证Rht-B1和Rht-D1的效应结果与RIL群体结果一致。 相似文献
32.
33.
34.
植物生长调节剂SHK-6对大豆叶片氮素代谢的调控效应 总被引:9,自引:2,他引:9
以鲁豆11号为材料,在大田条件下,研究了植物生长调节剂SHK-6号对大豆叶片氮素代谢调控的效应.结果表明:1)SHK-6处理提高了叶片蛋白质含量和改善了氨基酸组分;2)SHK -6处理增加了叶片中可溶性蛋白含量和游离氨基酸含量;3)SHK-6处理提高了各生育时期大豆主茎叶片中硝酸还原酶活性和硝态氮含量;同时,肽酶活性在初花期和盛荚期SHK-6处理均比对照低,而在盛花期(此期遇到干旱且高温)和子粒发育期均比对照高. 相似文献
35.
36.
37.
Haylage for horses is often harvested in late plant maturity, which could be associated with an increased risk of impaired hygienic quality in the forage and short aerobic storage stability after bale opening, but knowledge in this area is scant. An experiment was conducted in which the microbial composition was analyzed before and after conservation of primary growth haylage harvested early (June), middle (July), and late (August) in the season during 1 year. The counts of yeast, enterobacteria, and lactic acid bacteria (LAB) in preconserved herbage increased with the advancing harvest time (P ≤ .02). After conservation, the August haylage had increased counts of enterobacteria (log 4.3 colony-forming unit [CFU]/g) and LAB (log 6.5 CFU/g), compared with the June and July haylage (log ≤1.7 CFU/g for enterobacteria and ≤5.7 CFU/g for LAB, P < .001). The yeast counts were the lowest in the June haylage (log 5.0 CFU/g) compared with the July and August haylage (log ≥6.3 CFU/g, P < .001). After conservation, the mold counts were lower in the June haylage and greater in the August haylage (P = .01). In the preconserved herbage, Cladosporium cladosporioides was the most common mold species in June but Fusarium poae was in July, and Mucor fragilis in August. After conservation, Penicillium carneum was the only species found in the June haylage, with M. circinelloides most frequently found in the July haylage and M. hiemalis and M. circinelloides found at similar frequencies in the August haylage. An advanced harvest time resulted in greater counts of enterobacteria, yeast, and LAB and an increased number of mold species in the conserved haylage. The aerobic storage stability of the opened haylage bales measured by temperature was similar among the harvests. 相似文献
38.
课件制作在优化植物生理学教学中的应用 总被引:1,自引:1,他引:1
结合植物生理学的学科特点,探讨了课件制作在优化植物生理学教学中的应用,以期为优化植物生理学教学提供参考。 相似文献
39.
40.
Summary Microbial N from 15N-labelled bacterial biomass was investigated in a microcosm experiment, in order to determine its availability to wheat plants. Sterilized soil was inoculated with either bacteria (Pseudomonas aeruginosa alone or with a suspension of a natural bacterial population from the soil) or bacteria and protozoa to examine the impact of protozoa. Plant biomass, plant N, soil inorganic N and bacterial and protozoan numbers were determined after 14 and 35 days of incubation. The protozoa reduced bacterial numbers in soil by a factor of 8, and higher contents of soil inorganic N were found in their presence. Plant uptake of N increased by 20010 in the presence of protozoa. Even though the total plant biomass production was not affected, the shoot: root ratios increased in the presence of protozoa, which is considered to indicate an improved plant nutrient supply. The presence of protozoa resulted in a 65010 increase in mineralization and uptake of bacterial 15N by plants. This effect was more pronounced than the protozoan effect on N derived from soil organic matter. It is concluded that grazing by protozoa strongly stimulates the mineralization and turnover of bacterial N. The mineralization of soil organic N was also shown to be promoted by protozoa.Communication No. 9 of the Dutch Programme on Soil Ecology of Arable Farming Systems 相似文献