首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   72篇
  国内免费   49篇
林业   83篇
农学   42篇
基础科学   30篇
  568篇
综合类   254篇
农作物   51篇
水产渔业   118篇
畜牧兽医   114篇
园艺   30篇
植物保护   35篇
  2024年   7篇
  2023年   16篇
  2022年   35篇
  2021年   32篇
  2020年   36篇
  2019年   38篇
  2018年   28篇
  2017年   51篇
  2016年   46篇
  2015年   47篇
  2014年   41篇
  2013年   89篇
  2012年   78篇
  2011年   68篇
  2010年   66篇
  2009年   74篇
  2008年   69篇
  2007年   62篇
  2006年   52篇
  2005年   58篇
  2004年   39篇
  2003年   39篇
  2002年   20篇
  2001年   18篇
  2000年   34篇
  1999年   34篇
  1998年   22篇
  1997年   19篇
  1996年   26篇
  1995年   12篇
  1994年   12篇
  1993年   15篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   2篇
排序方式: 共有1325条查询结果,搜索用时 890 毫秒
91.
Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251, 250, 171, and 2.4 mg kg-1 respectively. DTPA-extractablc metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, total Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C minera]ization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some "linked" microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.  相似文献   
92.
The increasing frequency of dry periods in many regions of the world and the problems associated with salinity in irrigated areas frequently result in the consecutive occurrence of drought and salinity on cultivated land. Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under both drought and salinity reduce plant growth by affecting the availability, transport, and partitioning of nutrients. However, drought and salinity can differentially affect the mineral nutrition of plants. Salinity may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl with nutrients such as K+, Ca2+, and NO . Drought, on the other hand, can affect nutrient uptake and impair acropetal translocation of some nutrients. Despite contradictory reports on the effects of nutrient supply on plant growth under saline or drought conditions, it is generally accepted that an increased nutrient supply will not improve plant growth when the nutrient is already present in sufficient amounts in the soil and when the drought or salt stress is severe. A better understanding of the role of mineral nutrients in plant resistance to drought and salinity will contribute to an improved fertilizer management in arid and semi‐arid areas and in regions suffering from temporary drought. This paper reviews the current state of knowledge on plant nutrition under drought and salinity conditions. Specific topics include: (1) the effects of drought and salt stress on nutrient availability, uptake, transport, and accumulation in plants, (2) the interactions between nutrient supply and drought‐ or salt‐stress response, and (3) means to increase nutrient availability under drought and salinity by breeding and molecular approaches.  相似文献   
93.
Nitrous oxide emissions, nitrate, water-soluble carbon and biological O2 demand (BOD5) were quantified in different cropping systems fertilized with varying amounts of nitrogen (clayey loam, October 1991 to May 1992), in an aerated tank (March 1993 to March 1994), and in the nitrification-denitrification unit (March to July 1994) of a municipal waste water treatment plant. In addition, the N2O present in the soil body at different depths was determined (February to July 1994). N2O was emitted by all cropping systems (mean releases 0.13–0.35 mg N2O m-2 h-1), and all the units of the domestic waste water treatment plant (aerated tank 0–6.2 mg N2O m-2 h-1, nitrification tank 0–204,3 mg N2O m-2, h-1, denitrifying unit 0–2.2 mg N2O m-2 h-1). During the N2O-sampling periods estimated amounts of 0.9, 1.5, 2.4 and 1.4 kg N2O–N ha-1, respectively, were released by the cropping systems. The aerated, nitrifying and denitrifying tanks of the municipal waste water treatment plant released mean amounts of 9.1, 71.6 and 1.8 g N2O–N m-2, respectively, during the sampling periods.The N2O emission were significantly positively correlated with nitrate concentrations in the field plots which received no N fertilizer and with the nitrogen content of the aerated sludge tank that received almost exclusively N in the form of NH 4 + . Available carbon, in contrast, was significantly negatively correlated with the N2O emitted in the soil fertilized with 80 kg N ha-1 year. The significant negative correlation between the emitted N2O and the carbon to nitrate ratio indicates that the lower the carbon to nitrate ratio the higher the amount of N2O released. Increasing N2O emissions seem to occur at electron donorto-acceptor ratios (CH2O or BOD5-to-nitrate ratios) below 50 in the cropping systems and below 1200–1400 in the waste water treatment plant. The trapped N2O in the soil body down to a depth of 90 cm demonstrates that agricultural production systems seem to contain a considerable pool of N2O which may be reduced to N2 on its way to the atmosphere, which may be transported to other environments or which may be released at sometime in the future.Dedicated to Professor J.C.G. Ottow on the occasion of his 60th birthday  相似文献   
94.
Summary Acetylene reduction activity by Azospirillum brasilense, either free-living in soils or associated with wheat roots, was determined in a sterilised root environment at controlled levels of O2 tension and with different concentrations of mineral N. In an unplanted, inoculated soil nitrogenase activity remained low, at approximately 40 nmol C2H4 h-1 per 2kg fresh soil, increasing to 300 nmol C2H4 h-1 when malic acid was added as a C source via a dialyse tubing system. The N2 fixation by A. brasilense in the rhizosphere of an actively growing plant was much less sensitive to the repressing influence of free O2 than the free-living bacteria were. An optimum nitrogenase activity was observed at 10 kPa O2, with a relatively high level of activity remaining even at an O2 concentration of 20 kPa. Both NO inf3 sup- and NH inf4 sup+ repressed nitrogenase activity, which was less pronounced in the presence than in the absence of plants. The highest survival rates of inoculated A. brasilense and the highest rates of acetylene reduction were found in plants treated with azospirilli immediately after seedling emergence. Plants inoculated at a later stage of growth showed a lower bacterial density in the rhizosphere and, as a consequence, a lower N2-fixing potential. Subsequent inoculations with A. brasilense during plant development did not increase root colonisation and did not stimulate the associated acetylene reduction. By using the 15N dilution method, the affect of inoculation with A. brasilense in terms of plant N was calculated as 0.067 mg N2 fixed per plant, i.e., 3.3% of the N in the root and 1.6% in the plant shoot were of atmospheric origin. This 15N dilution was comparable to that seen in plants inoculated with non-N2-fixing Psudomonas fluorescens.  相似文献   
95.
Microbial adaptation to salinity can be achieved through synthesis of organic osmolytes,which requires high amounts of energy;however,a single addition of plant residues can only temporarily improve energy supply to soil microbes.Therefore,a laboratory incubation experiment was conducted to evaluate the responses of soil microbes to increasing salinity with repeated additions of plant residues using a loamy sand soil with an electrical conductivity in saturated paste extract(ECe) of 0.6 dS m-1.The soil was kept non-saline or salinized by adding different amounts of NaCl to achieve ECe of 12.5,25.0 and 50.0 dS m-1.The non-saline soil and the saline soils were amended with finely ground pea residues at two rates equivalent to 3.9 and 7.8 g C kg-1 soil on days 0,15 and29.The soils receiving no residues were included as a control.Cumulative respiration per g C added over 2 weeks after each residue addition was always greater at 3.9 than 7.8 g C kg-1 soil and higher in the non-saline soil than in the saline soils.In the saline soils,the cumulative respiration per g C added was higher after the second and third additions than after the first addition except with3.9 g C kg-1 at ECe of 50 dS m1.Though with the same amount of C added(7.8 g C kg-1),salinity reduced soil respiration to a lesser extent when 3.9 g C kg-1 was added twice compared to a single addition of 7.8 g C kg-1.After the third residue addition,the microbial biomass C concentration was significantly lower in the soils with ECe of 25 and 50 dS m1 than in the non-saline soil at3.9 g C kg-1,but only in the soil with ECe of 50 dS m-1 at 7.8 g C kg-1.We concluded that repeated residue additions increased the adaptation of soil microbial community to salinity,which was likely due to high C availability providing microbes with the energy needed for synthesis of organic osmolytes.  相似文献   
96.
Background : Manganese deficiency often becomes a yield limiting factor, particularly on calcareous soils, even though the total soil manganese content is usually sufficient. Although it is known that acidifying N fertilizers can improve Mn availability, the reason of this effect is still unknown. Aim : Our aim was to investigate the effect of stabilized ammonium fertilizers as a tool to distinguish between physiological‐ and nitrification‐induced acidification. Method : Two pot experiments with Triticum aestivum L. and one soil incubation experiment using different nitrogen forms (CN = calcium nitrate, AN = ammonium nitrate, AS = ammonium sulfate, ATS = ammonium thiosulfate) with and without addition of nitrification inhibitors (DCD, Nitrapyrin, Piadin, DMPP) were conducted to examine the effect on Mn availability in the soil and Mn uptake by the plants at different development stages (EC 31 und 39). Results : With increasing fertilizer NH 4 + content a higher Mn concentration was detected: CN: 32 µg Mn g?1 DM, AN: 39 µg Mn g?1 DW, AS: 55 µg Mn g?1 DM, ATS: 109 µg Mn g?1 DM. The addition of a nitrification inhibitor resulted in a significantly lower rhizosphere pH compared to the non‐stabilized fertilizer. Surprisingly, the use of different nitrification inhibitors led to unchanged (CN, AN) or lower Mn concentrations of wheat. Especially in the NH 4 + treatments (AS and ATS), this negative effect was very evident (AS+DCD: 42 µg Mn g?1 DM; ATS+DCD: 55 µg Mn g?1 DM). Conclusions : Mn availability was enhanced by ongoing nitrification process rather than physiological acidification. Compared to other N forms, ammonium thiosulfate led to the highest Mn availability in bulk soil.  相似文献   
97.
This paper reports research that attempts to rehabilitate toxic Pb/Zn mine tailings, in Guangdong, China, to achieve a healthy functional soil that supports sustainable vegetation. We studied the effects of the earthworm Pheretima guillelmi on the growth of a woody legume Leucaena leucocephala on Pb/Zn mine tailings diluted with varying amounts of mineral soil in pot experiments. L. leucocephala grew successfully on tailings with a 25% (w/w) soil amendment, but P. guillelmi only survived and actively burrowed with a 50% soil amendment. The presence of earthworms improved the yield of plants by 10-30%. Whilst earthworms marginally increased available N and P in soil, they increased uptake of phosphorus (by about 10%) to above-ground plant tissues. Six-month-old plants were more sensitive than 10-month plants to metal stress. P. guillelmi increased bioavailable metal concentrations in the amended spoils, accompanied by a direct increase of metal uptake by the plants. Increased metal uptake by plants was largely due to the higher dry matter production stimulated by earthworm activity, but this increased the rate of metal uptake into plants from spoil by at least 16% and as much as 53%. These results demonstrate that we should broaden the ecological context of phytoremediation by considering the plant-soil-animal interactions that influence metal mobility.  相似文献   
98.
The impact of increasing concentrations of atmospheric CO2 upon plant physiology has been widely investigated. Plant, and in particular root, growth is nearly always enhanced as a direct consequence of CO2 enrichment, with C3 species generally more responsive than C4 species. Such alterations in plant productivity will have consequence for below-ground processes and increased carbon allocation to the roots may favour symbiotic relationships. This paper discusses the current information available for the consequences of these changes upon mycorrhizal relationships. Generally mycorrhizal plants grown under CO2 enrichment show enhanced phosphorus uptake but nitrogen uptake is unaffected. This increased nutrient uptake is not correlated with increased mycorrhizal colonization of the roots. Similarly root exudation does not increase under CO2 enrichment but qualitative differences have yet to be assessed. However, it is predicted that total rhizodeposition of materials will increase as will litter inputs, although mineral and biochemical alterations to these plant derived inputs may occur. The consequences of such changes within the rhizosphere are discussed and future research  相似文献   
99.
Summary An investigation was conducted during the summer months of 1986–1987 and 1987–1988 in Western Australia to evaluate the effect of soil solarization on the control of root rot of gerbera an also on the microbial and nutrient status of the soil. Infested soil cores were sampled from a site where root-rot was a severe problem and were removed to a non-infested site where they were subjected to soil solarization or fumigation. Soil solarization resulted in reduced root rot (root disease index 28.6%) in comparison to the untreated control (52.0%) 8 months after planting. Plants in the fumigated plots had 15.8% less disease than those in solarized plots. Solarization increased the total numbers of bacteria and actinomycetes, and the proportion of bacteria and fungi antogonistic to Fusarium oxysporum, F. solani and Rhizoctonia solani. The proportion of actinomycetes antagonistic to these fungi, however, did not differ between solarized and control soil treatments. There was a significant reduction in disease in plants grown in infested fumigated soil to which a 10% concentration of solarized soil had been added, suggesting the development of microbial suppression in solarized soil. Phytophthora cryptogea was eradicated to 30 cm by solarization as well as by fumigation. Solarization eliminated R. solani but not F. oxysporum to a soil depth of 10 cm. Solarization increased the levels of NO n3 -N and NH4 +-N in soil, but did not affect the concentrations of PO4 3–, K+, Fe2+, organic C and pH. Yield (as number of flowers per plant) was increased by soil solarization and by fumigation.Increased yields and decreased disease severity in the solarized plots could have been caused by (1) a reduction in the infectivity of the infested soils, (2) an increase in the suppressiveness of the soil, and (3) an increased available of plant nutrients.  相似文献   
100.
Soil texture and evaporative demand have been reported to be the main factors which influence the transpirational response to soil water deficits. However, experimental evidences are not enough. The objective of this study was to investigate the transpirational response to soil water availability in soils of different textures under different evaporative demand levels. The three main soils of the Loess Plateau of China (loamy clay, clay loam and sandy loam) were selected and six constant soil water treatments were applied for winter wheat (Triticum aestivum L.) grown in pots. In order to reduce the influence of environmental conditions and plant factors, a normalized daily transpiration rate was used to develop the relationships with volumetric soil water content and soil water suction. Results showed that, under various levels of evaporative demand, a linear-plateau function with a critical value could be used to describe the dynamic change of the normalized transpiration rate with soil drying. Soil texture significantly influenced both the critical and the slope values of the linear-plateau equations, however, evaporative demand significantly affected the critical values of volumetric soil water content and soil suction for the loamy clay and clay loam only. Therefore, for saving water, different strategies are needed for these three soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号