首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3552篇
  免费   148篇
  国内免费   245篇
林业   98篇
农学   228篇
基础科学   44篇
  1557篇
综合类   1334篇
农作物   198篇
水产渔业   52篇
畜牧兽医   208篇
园艺   173篇
植物保护   53篇
  2024年   26篇
  2023年   44篇
  2022年   70篇
  2021年   103篇
  2020年   85篇
  2019年   107篇
  2018年   66篇
  2017年   143篇
  2016年   135篇
  2015年   159篇
  2014年   166篇
  2013年   255篇
  2012年   257篇
  2011年   251篇
  2010年   211篇
  2009年   261篇
  2008年   264篇
  2007年   262篇
  2006年   205篇
  2005年   197篇
  2004年   124篇
  2003年   92篇
  2002年   61篇
  2001年   53篇
  2000年   50篇
  1999年   38篇
  1998年   26篇
  1997年   38篇
  1996年   43篇
  1995年   26篇
  1994年   19篇
  1993年   26篇
  1992年   19篇
  1991年   16篇
  1990年   11篇
  1989年   11篇
  1988年   12篇
  1987年   9篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有3945条查询结果,搜索用时 15 毫秒
21.
斜板上流式厌氧污泥床处理低浓度有机废水的试验研究   总被引:13,自引:0,他引:13  
本文报告了用16.1升斜板上流式厌氧污泥床在常温下处理低浓度有机废水的启动和运行试验研究。试验使用稀释酒精废水为模拟处理基质,启动阶段仅用77天时间,装置水力负荷达到2m3/(m3.d),COD去除率达到78.9%,此时进水COD浓度为767.8mg/L。在第二阶段试验中,仅用一天时间,装置就恢复了时隔半年的正常运行。以后在温度12℃以上,HRT为12小时,进水COD浓度在660.0~982.0mg/L范围的129天稳定运行中,平均COD去除率为76.1%。结果表明:采用该工艺处理低浓度有机废水在技术上是可行的,具有启动快,运行稳定,工艺控制简便的优点。水浸没的成组浅层斜板在UASB/ITS反应器中有良好的污泥截留能力和稳流效果,容易生成大颗粒污泥。颗粒污泥最大粒径可达5mm,SVI为18.2ml/g。颗粒污泥中以甲烷丝菌为优势菌。  相似文献   
22.
Recently, the nanotechnology industry has seen a growing interest in integrating silver nanoparticles(AgNPs) into agricultural products, which increases soil exposure to these particles. This demands an investigation into the effect of AgNPs on soil health. Changes in soil enzyme activities upon exposure to AgNPs can serve as early indicators of any adverse effects that these particles may have on soil quality. This study aimed to determine the effects of AgNP size, concentration, coating, and e...  相似文献   
23.
在硫酸盐还原厌氧氨氧化(Sulfate-Reducing Anaerobic Ammonium Oxidation,SRAO)脱氮工艺的基础上,探究了SO42-浓度在100 mg/L的条件下,控制NH4+的投加量在不同N/S(NH4+-N/SO42-)浓度比下ASBR(Anaerobic Sequencing Batch Reactor)反应器的运行效果及其脱氮性能。N/S从1.0增大到3.0时,ASBR中氨氮的平均去除率从78.5%增加到94.4%,但体系内SAD(Sulfur Autotrophic Denitrification)菌的丰度及活性未受到明显抑制,SRAO作用和ANAMMOX(Anaerobic Ammonia Oxidation)作用始终是ASBR脱氮的主要途径。当N/S的浓度比由3增至4时,ASBR中氨氮的平均去除率由94.4%下降为69.2%。这表明随着N/S的增大,体系内ANAMMOX菌和SRAO菌活性的降低,抑制了体系脱氮性能。这时SAD菌的丰度及活性略有增加。硫的去除率随N/S比的变化趋势和总氮的去除规律类似,在N/S=3时达到最大74.2%。结合高通量测序结果,说明不同N/S下的脱氮微生物优势菌群会不断变化,改变体系脱氮除硫性能。  相似文献   
24.
近些年来,环境中的微塑料污染引起了全世界的广泛关注。微塑料具有比表面积大、吸附力强等特点,其易与环境中的典型污染物(如有机污染物和重金属)相互作用,改变这些污染物的环境行为。明确微塑料对有机污染物和重金属的吸附解吸作用过程和机制,对于明确有机污染物和重金属的环境行为及毒性效应的相应变化具有重要的意义。本文系统综述了微塑料对有机污染物和重金属吸附解吸作用的研究进展,着重从微塑料性质(类型、形貌特征、表面官能团、极性、吸附位点、结晶度、老化程度)、污染物性质(表面官能团、疏水性、极性、浓度、形态等)以及环境因素(温度、pH、盐度、离子强度、表面活性剂、微生物膜)3个方面,系统分析了微塑料对典型污染物吸附解吸的作用过程和机理。微塑料对有机污染物和重金属的吸附解吸主要受表面吸附、孔隙填充、络合作用以及疏水作用等的影响。微塑料对污染物的吸附动力学绝大部分符合动力学(准)二级模型,部分符合一级动力学;吸附等温线基本符合Frendlich模型、Langmuir模型和Henry模型,部分符合线性模型和复合模型。未来应加强微塑料对一些新型污染物吸附解吸方面的研究工作,进一步明确微塑料与典型污染物之间相互作用的过程和机理,并建立相关的数据库和模型。希望为后续的微塑料吸附解吸典型污染物的相关研究提供借鉴与参考,也为科学地认识微塑料的环境行为提供依据。  相似文献   
25.
施肥对灌漠土作物产量、土壤肥力与重金属含量的影响   总被引:1,自引:0,他引:1  
有机物还田是提升土壤肥力的主要措施,但也存在造成土壤金属污染的潜在风险。为查明不同有机物还田对土壤质量及作物产量的影响,本文通过长期定位试验,研究了无肥对照、常规施化肥(氮磷配施)以及70%常规化肥与牛粪、沼渣、污泥、鸡粪、菌渣和猪粪配施对土壤理化性状、有机碳和氮的固存率、氮磷钾活化系数、作物产量及重金属含量的影响。结果表明:牛粪、沼渣、污泥、菌渣、鸡粪和猪粪与70%化肥配施虽作物产量与常规施化肥相似,但6种有机物处理土壤有机质、全氮和碱解氮含量都较常规施化肥处理显著增加,污泥、鸡粪和猪粪处理土壤全磷与速效磷含量较常规施化肥处理显著增加,而且牛粪、沼渣、鸡粪和猪粪处理的速效钾、土壤磷活化系数和土壤钾活化系数较常规施化肥处理也显著提升。牛粪、沼渣、污泥、菌渣、鸡粪和猪粪处理土壤有机碳固存率为36.42%~71.61%,较常规施化肥处理都显著提高;而其氮固存率为6.47%~49.44%,仅有菌渣处理与常规施化肥处理差异不显著,而其他处理较常规施化肥处理显著增加。长期施鸡粪和菌渣处理的土壤铜含量较常规施化肥处理显著增加,增加量分别为4.17mg·kg~(-1)和14.2mg·kg~(-1);而污泥、鸡粪和菌渣处理的土壤锌含量较常规施化肥处理显著增加,增加量分别为13.53 mg·kg~(-1)、22.60 mg·kg~(-1)和49.73mg·kg~(-1)。综上,等有机质(4 500kg×hm~(-2))的牛粪、沼渣、污泥、菌渣、鸡粪和猪粪可替代30%氮磷肥,作物产量不受影响;不同有机物培肥土壤效果为污泥、鸡粪和猪粪优于牛粪和沼渣,而沼渣的培肥效果略差。为保证土壤环境质量稳定不恶化,种植小麦时有机物铜和锌的年携入量应分别低于53.01g×hm~(-2)和221.30 g×hm~(-2),而种植玉米时应分别低于153.40 g×hm~(-2)和347.04 g×hm~(-2)。  相似文献   
26.
中国是人口最多的发展中国家,生产生活中产生的有机废弃物数量巨大,堆制有机肥是降低有机废物污染风险的重要方式,而有机肥标准则是防止有机肥成为新的土壤污染源,规范有机肥产业健康发展的重要保障。目前我国有机肥不合格现象时有发生,针对有机堆肥的标准仅有一个8年前的行业标准(NY 525—2012)的现状,本文对比了中国、日本、澳大利亚、欧盟、美国有机肥标准的重要指标,对存在的重金属残留、抗生素污染、病原体污染、营养富集及土壤盐渍化等有机肥质量安全风险问题进行分析,为我国有机肥行业未来绿色、健康、可持续发展提出建议。尽管我国现有有机肥质量标准,在具体指标要求方面优于美国,但和欧盟相比还有差距,比如我国重金属Cu、Zn、Ni限量缺失,对Cd等重金属限值要求不够严格,长期施用会导致土壤重金属含量超过风险筛选值,严重影响农作物安全;同时,由于部分畜禽养殖业不合理使用抗生素,加之有机肥生产企业技术的欠缺,农户施用时缺乏指导,监管部门执法不严等因素,我国有机肥施用过程存在较大风险隐患。因此,进一步完善有机肥标准体系,强化对原料中有毒有害物质的限制,要求选用原料批批检,加大准入和过程的落实力度,才能保障我国有机肥产业有序健康发展。  相似文献   
27.
有机酸对红壤磷素吸附特性的影响   总被引:2,自引:0,他引:2  
以不同供磷水平的旱地红壤为材料,探讨了柠檬酸、酒石酸和草酸对红壤磷素吸附特性的影响。试验结果表明,经有机酸培育后的红壤磷的吸附曲线与Langmuir方程吻合性很好,相关系数可达0.949~0.999。有机酸可使磷的吸附曲线类型发生转变,柠檬酸可使土壤磷的吸附等温线由第Ⅱ类型转化为第Ⅲ类型,酒石酸可改变CK与NPK处理的吸附类型,而草酸没有影响。柠檬酸可使土壤的Xm降低30%~75.3%,以PM处理中的降低程度最大。酒石酸和草酸却在不同程度上使土壤的Xm增大,二者可使Xm分别增加0.8~2.3倍和0.1~0.3倍。三种有机酸均可减小平衡常数K值,提高土壤磷素的吸附饱和度,对磷素吸附特征值的影响程度大小顺序为:柠檬酸>酒石酸>草酸。在磷素利用率低的红壤中,增施有机肥或配施有机肥是提高土壤磷素生物有效性的最佳途径。  相似文献   
28.
在同一"气候-母质"条件下,本文研究了滇中飒马场流域4种处于不同演替阶段的本地植被群落和1种外来植被群落对酸性紫色土理化性质的影响。结果表明:随着灌草丛、云南松、针阔混交林到次生常绿阔叶林的本地植物群落演替过程,土壤的容重、pH、水溶性盐阳离子含量明显降低,而土壤粘粒、水解性酸、活性铝、有机碳、全氮含量显著增加,同时表层土壤有机碳和全氮占其剖面总含量的比例有降低的趋势。次生常绿阔叶林土壤0~150 cm土层的有机碳、全氮贮存量比灌草丛土壤的分别高出35 Mg hm-2和1.2 Mg hm-2,而其pH则比灌草丛土壤的低0.33。这反映出酸性紫色土的富铝化过程、生物富集过程和粘化过程随着植被演进而加强。桉树林土壤有机碳、全氮贮量和pH分别为93.04 mg hm-2、2.45 mg hm-2和4.49,与针阔混交林土壤的有机碳、全氮贮量和pH没有显著差异,但是其水解性酸度和活性铝含量均显著高于针阔混交林土壤的,表明长期种植桉树有加速土壤酸化的可能。  相似文献   
29.
供硫和丛枝菌根真菌对洋葱生长和品质的影响   总被引:1,自引:1,他引:1  
以珍珠岩为植物的生长基质盆栽试验,分别供给0.1、1.75和4 mmol/L三个不同硫水平的Long Ashton营养液,研究接种丛枝菌根真菌Glomus versiform对洋葱(Allium cepa L.)生长和品质的影响。结果表明,接种丛枝菌根真菌显著的改善了宿主植物的磷营养水平,促进了洋葱的生长;而硫处理对洋葱生长的影响差异不显著,但随着供硫水平的提高植株地上部全硫含量和有机硫含量显著增加。接种菌根真菌对洋葱硫营养的影响受外界供硫水平的影响,在供硫0.1 mmol/L时降低了洋葱植株的硫含量;而在供硫1.75和4 mmol/L时显著改善了洋葱的硫营养状况,宿主植物的酶解丙酮酸(enzyme produced pyruvic acid, EPY)的含量也显著增加。说明丛枝菌根真菌能够帮助宿主植物吸收外界环境中硫营养成分,改善洋葱的硫营养状况及品质。  相似文献   
30.
Pyrophosphate (140 mM, pH 7.1) extracts of two arable soils and one pasture soil were ultrafiltrated separating the extracted material into three fractions: AI with nominal molecular weight (nmw) > 100 kD, AII with nmw between 10 kD and 100 kD and R with nmw < 10 kD. Protease activity was determined in the fractions by using three different substrates: N-benzoyl-l-argininamide (BAA), specific for trypsin; N-benzyloxy-carbonyl-l-phenylalanyl l-leucine (ZPL), specific for carboxypeptidases; and casein, essentially a non-specific substrate. The derivative fractions were also analysed for their amino acid N and humic (HA) and fulvic (FA) acid contents. The organic matter of extracts and derivative fractions obtained from the pasture soil was analysed by isoelectric focusing (IEF) and that of fractions analysed by pyrolysis gas chromatography (Py-GC). Activities of the extract were monitored for their thermal stability and those of the extract and derivative fractions for their optimal pH.Due to the mechanical disintegrating action of sodium pyrophosphate over the humic substances during the fractionation process the amount of total organic C and FA in the fractions was ranked as R > AII > AI. The lowest amino acid N/organic C was found in the R fraction, whereas AII fraction was rich in humic acids, carbohydrates and amino acid N and AI fraction showed the lowest carbohydrate content. At least 70% of the total BAA- and ZPL-hydrolysing activity was associated to particles with nmw higher than 10 kD and at least 30% of these activities were present in particles with nmw higher 100 kD. Casein-hydrolysing activity was quite evenly distributed among the three fractions (AI, AII and R). The extracted protease-organic complexes were resistant to thermal denaturation and some of them showed optimal activity at pH values higher than 10 as a result of the polyanionic characteristics of the humic material surrounding enzyme molecules and of the presence of alkaline protease. Comparison of data obtained in Py-GC analyses and in protease activity suggests that BAA-hydrolysing activity was associated to a highly condensed humic matter and ZPL-hydrolysing activity to less resistant humic substances, while at least some of the extracted casein-hydrolysing activity was present as glyco-proteins not associated to humus. BAA-hydrolysing activity was probably inhibited by fresh organic matter of carbohydrate origin whereas lignin derived organic matter probably inhibited ZPL- and casein-hydrolysing activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号