首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10741篇
  免费   568篇
  国内免费   920篇
林业   512篇
农学   804篇
基础科学   149篇
  3807篇
综合类   3367篇
农作物   646篇
水产渔业   607篇
畜牧兽医   1757篇
园艺   308篇
植物保护   272篇
  2024年   35篇
  2023年   119篇
  2022年   192篇
  2021年   306篇
  2020年   311篇
  2019年   394篇
  2018年   267篇
  2017年   444篇
  2016年   579篇
  2015年   451篇
  2014年   494篇
  2013年   975篇
  2012年   892篇
  2011年   746篇
  2010年   647篇
  2009年   603篇
  2008年   531篇
  2007年   623篇
  2006年   552篇
  2005年   448篇
  2004年   348篇
  2003年   314篇
  2002年   236篇
  2001年   195篇
  2000年   208篇
  1999年   137篇
  1998年   152篇
  1997年   141篇
  1996年   150篇
  1995年   107篇
  1994年   100篇
  1993年   103篇
  1992年   86篇
  1991年   67篇
  1990年   72篇
  1989年   70篇
  1988年   39篇
  1987年   36篇
  1986年   20篇
  1985年   14篇
  1984年   5篇
  1983年   7篇
  1982年   3篇
  1981年   2篇
  1979年   3篇
  1975年   1篇
  1974年   2篇
  1962年   1篇
  1956年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
为搞清湿地土壤驱动N2O排放的关键氮源类型,有效减少湿地N2O的排放,本文通过室内控制温湿度,用气相色谱法分析不同外源氮素对湿地N2O排放的影响。结果表明:外加氮源组总是高于对照组N2O排放量(4.4 mg·m-3)。在设定的剂量范围内,单独添加尿素或尿素与硝酸铵1∶1配合时N2O排放量呈现先增后减的单峰分布趋势,峰值分别为10.6 mg·m-3和229.0 mg·m-3;单独添加硝酸铵时N2O排放量(32.6~111.0 mg·m-3)随着氮素添加量增加呈现持续上升趋势。单独添加尿素或硝酸铵、尿素与硝酸铵1∶1配合均促进N2O的排放,但硝酸铵尿素混合添加对N2O排放量的贡献单独添加硝酸铵单独添加尿素。这为预测内蒙古高原区农牧交错带湿地氮素输入可能带来的温室效应和有效减排提供科学依据。  相似文献   
52.
Meat quality means the characteristics such as appearance is related to palatability in fresh meat or manufactured meat, it includes meat color, meat structure, hardness, marbling, water holding capacity and so on.The physical characteristics of mutton quality determines the consumer acceptability of meat and there is a close relationship between chemical composition of mutton quality and nutrient substance.With the improvement of living standards, consumers are increasingly high demand for mutton.From quantitative to qualitative change, we need to continuously improve mutton quality.At present, the production of high quality animal products has become a hot topic.This paper is a summary of the effects of breed, gender, age, environment and feed nutrition on mutton quality, and aims to provide a scientific basis for improving of mutton quality with nutritional regulation measures.  相似文献   
53.
优化施肥对春小麦产量、氮素利用及氮平衡的影响   总被引:3,自引:0,他引:3  
2009 ~ 2010年,在宁夏引黄灌区分别以宁春11号和宁春16号小麦为供试作物,利用田间试验研究了优化施肥(OPT)和习惯施肥(CON)对春小麦产量、氮素吸收利用和土壤硝态氮累积的影响,表观评估了土壤—小麦体系氮素平衡.结果表明,相对于CK处理,OPT和CON都显著提高春小麦籽粒产量地上部生物量,并促进籽粒N和地上...  相似文献   
54.
东北地区春玉米临界氮浓度稀释曲线的建立和验证   总被引:3,自引:0,他引:3  
过量施氮是目前玉米栽培中存在的普遍现象,基于临界氮浓度稀释曲线计算得出的氮营养指数是诊断氮营养丰缺的重要手段。基于东北地区4个生态点的试验数据,构建了东北地区春玉米临界氮稀释曲线,并在此基础上建立了氮营养指数模型和需氮量模型,结果表明,东北地区春玉米地上部临界氮浓度与生物量符合幂函数关系。利用独立试验资料对建立的临界氮浓度稀释曲线进行检验,发现基于临界氮浓度稀释模型计算的氮营养指数可以准确诊断玉米植株的氮营养状况,并计算出实时的氮素需求量。该研究建立的东北地区春玉米临界氮稀释模型可以为该地区春玉米的氮营养诊断和动态调控提供较好的理论和技术指导。  相似文献   
55.
为探讨楸树无性系对氮素的吸收、分配及利用特性,以2年生楸树无性系015-1、1-3、7080、1-4和004-1组培苗为试验材料,应用15N示踪技术对楸树无性系进行施肥试验。结果表明,5个楸树无性系氮肥的吸收率、利用率及分配率具有较强的一致性,氮肥利用率介于27.14%~31.24%之间。楸树无性系根和叶的肥料氮比例(Ndff)明显大于茎,楸树无性系根和叶对氮肥的竞争力较强,茎对氮肥的竞争力最弱。015-1茎部氮素分配率及无性系7080根部氮素分配率明显高于其他4个无性系;氮素分配率在各个器官中差异显著,叶片氮素的分配率最高,总体趋势为叶根茎。本研究结果为楸树氮肥的合理施用提供了理论依据。  相似文献   
56.
Soil compaction, especially subsoil compaction, in agricultural fields has increased due to widespread use of heavy machines and intensification of vehicular traffic. Subsoil compaction changes the relative distribution of roots between soil layers and may restrict root development to the upper part of the soil profile, limiting water and mineral availability. This study investigated the direct effects of inter-row subsoiling, biological subsoiling and a combination of these two methods on soil penetration resistance, root length density, nitrogen uptake and yield. In field experiments with potatoes in 2013 and 2014, inter-row subsoiling (subsoiler) and biological subsoiling (preceding crops) were studied as two potential methods to reduce soil penetration resistance. Inter-row subsoiling was carried out post planting and the preceding crops were established one year, or in one case two years, prior to planting. Soil resistance was determined with a penetrometer three weeks after the potatoes were planted and root length density was measured after soil core sampling 2 months after emergence. Nitrogen uptake was determined in haulm (at haulm killing) and tubers (at harvest). Inter-row subsoiling had the greatest effect on soil penetration resistance, whereas biological subsoiling showed no effects. Root length density (RDL) in the combined treatment was higher than in the separate inter-row and biological subsoiling treatments and the control, whereas for the separate inter-row and biological subsoiling treatments, RLD was higher than in the control. Nitrogen uptake increased with inter-row subsoiling and was significantly higher than in the biological subsoiling and control treatments. However, in these experiments with a good supply of nutrients and water, no yield differences between any treatments were observed.  相似文献   
57.
Three years of field experiments were carried out to explore the response of potato dry matter production, accumulated intercepted photosynthetic active radiation (Aipar) and radiation use efficiency (RUE) to five N levels providing 0, 60, 100, 140 and 180 kg N ha−1 and three drip irrigation strategies, which were full, deficit and none irrigation. Results showed that, irrespective of years, dry matter production and Aipar were increased by prolonged N fertigation, even though N fertigation was carried out from middle to late growing season. The highest total and tuber dry matter and accumulated radiation interception in all three years were obtained when potatoes were provided with 180 kg N ha−1. RUE on the other hand was not affected by N regime. Thus, increases in total dry matter production with increasing N levels were essentially caused by higher Aipar. The strongest response to N fertilization occurred when most N was applied early in the growing season and the latest N fertilization should be applied no later than 41–50 days after emergence. Deficit irrigation, which received ca.70% of irrigation applied to full irrigation, did not reduce radiation interception and radiation use efficiency.  相似文献   
58.
Excessive application of N fertilizer in pursuit of higher yields is common due to poor soil fertility and low crop productivity. However, this practice causes serious soil depletion and N loss in the traditional wheat cropping system in the Loess Plateau of China. Growing summer legumes as the green manure (GM) crop is a viable solution because of its unique ability to fix atmospheric N2. Actually, little is known about the contribution of GM N to grain and N utilization in the subsequent crop. Therefore, we conducted a four-year field experiment with four winter wheat-based rotations (summer fallow-wheat, Huai bean–wheat, soybean–wheat, and mung bean–wheat) and four nitrogen fertilizer rates applied to wheat (0, 108, 135, and 162 kg N/ha) to investigate the fate of GM nitrogen via decomposition, utilization by wheat, and contribution to grain production and nitrogen economy through GM legumes. Here we showed that GM legumes accumulated 53–76 kg N/ha per year. After decomposing for approximately one year, more than 32 kg N/ha was released from GM legumes. The amount of nitrogen released via GM decomposition that was subsequently utilized by wheat was 7–27 kg N/ha. Incorporation of GM legumes effectively replaced 13–48% (average 31%) of the applied mineral nitrogen fertilizer. Additionally, the GM approach during the fallow period reduced the risk of nitrate-N leaching to depths of 0–100 cm and 100–200 cm by 4.8 and 19.6 kg N/ha, respectively. The soil nitrogen pool was effectively improved by incorporation of GM legumes at the times of wheat sowing. Cultivation of leguminous GM during summer is a better option than bare fallow to maintain the soil nitrogen pool, and decrease the rates required for N fertilization not only in the Loess Plateau of China but also in other similar dryland regions worldwide.  相似文献   
59.
Elevated CO2 stimulates crop yields but leads to lower tissue and grain nitrogen concentrations [N], raising concerns about grain quality in cereals. To test whether N fertiliser application above optimum growth requirements can alleviate the decline in tissue [N], wheat was grown in a Free Air CO2 Enrichment facility in a low‐rainfall cropping system on high soil N. Crops were grown with and without addition of 50–60 kg N/ha in 12 growing environments created by supplemental irrigation and two sowing dates over 3 years. Elevated CO2 increased yield and biomass (on average by 25%) and decreased biomass [N] (3%–9%) and grain [N] (5%). Nitrogen uptake was greater (20%) in crops grown under elevated CO2. Additional N supply had no effect on yield and biomass, confirming high soil N. Small increases in [N] with N addition were insufficient to offset declines in grain [N] under elevated CO2. Instead, N application increased the [N] in straw and decreased N harvest index. The results suggest that conventional addition of N does not mitigate grain [N] depression under elevated CO2, and lend support to hypotheses that link decreases in crop [N] with biochemical limitations rather than N supply.  相似文献   
60.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号