首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2459篇
  免费   100篇
  国内免费   188篇
林业   91篇
农学   89篇
基础科学   19篇
  1441篇
综合类   625篇
农作物   85篇
水产渔业   67篇
畜牧兽医   261篇
园艺   46篇
植物保护   23篇
  2024年   22篇
  2023年   36篇
  2022年   61篇
  2021年   70篇
  2020年   51篇
  2019年   67篇
  2018年   40篇
  2017年   66篇
  2016年   80篇
  2015年   143篇
  2014年   126篇
  2013年   112篇
  2012年   135篇
  2011年   178篇
  2010年   158篇
  2009年   175篇
  2008年   131篇
  2007年   173篇
  2006年   162篇
  2005年   121篇
  2004年   118篇
  2003年   73篇
  2002年   29篇
  2001年   29篇
  2000年   47篇
  1999年   53篇
  1998年   21篇
  1997年   40篇
  1996年   44篇
  1995年   44篇
  1994年   24篇
  1993年   17篇
  1992年   28篇
  1991年   18篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   9篇
  1986年   1篇
  1985年   4篇
  1956年   2篇
排序方式: 共有2747条查询结果,搜索用时 62 毫秒
81.
Long-term effects of high Cd concentrations on enzyme activities, microbial biomass and respiration and bacterial community structure of soils were assessed in sandy soils where Cd was added between 1988 and 1990 as Cd(NO3)2 to reach concentrations ranging from 0 to 0.36 mmol Cd kg−1 dry weight soil. Soils were mantained under maize and grass cultivation, or ‘set-aside’ regimes, for 1 year. Solubility of Cd and its bioavailability were measured by chemical extractions or by the BIOMET bacterial biosensor system. Cadmium solubility was very low, and Cd bioavailability was barely detectable even in soils polluted with 0.36 mmol Cd kg−1. Soil microbial biomass carbon (BC) was slightly decreased and respiration was increased significantly even at the lower Cd concentration and as a consequence the metabolic quotient (qCO2) was increased, indicating a stressful condition for soil microflora. However, Cd-contaminated soils also had a lower total organic C (TOC) content and thus the microbial biomass C-to-TOC ratio was unaffected by Cd. Alkaline phosphomonoesterase, arylsulphatase and protease activities were significantly reduced in all Cd-contaminated soils whereas acid phosphomonoesterase, β-glucosidase and urease activites were unaffected by Cd. Neither changes in physiological groups of bacteria, nor of Cd resistant bacteria could be detected in numbers of the culturable bacterial community. Denaturing gradient gel electrophoresis analysis of the bacterial community showed slight changes in maize cropped soils containing 0.18 and 0.36 mmol Cd kg−1 soil as compared to the control. It was concluded that high Cd concentrations induced mainly physiological adaptations rather than selection for metal-resistant culturable soil microflora, regardless of Cd concentration, and that some biochemical parameters were more sensitive to stress than others.  相似文献   
82.
Developments in soil microbiology since the mid 1960s   总被引:11,自引:0,他引:11  
Heribert Insam 《Geoderma》2001,100(3-4):389-402
Since the 1960s, soil microbiology underwent major changes in methods and approaches and this review focuses on the developments in some selected aspects of soil microbiology. Research in cell numbers of specific bacterial and fungal groups was replaced by a focus on biochemical processes including soil enzyme activities, and flux measurements of carbon and nutrients. Ecologists focused on soil microbial pools whereas soil microbial biomass as an important source and sink of nutrients were recognized in agriculture. Soil microbiologists started to use structural components like phospholipid fatty acids for quantification of specific microbial groups without the need to cultivate them. In the last decade, molecular approaches allowed new insights through the analysis of soil extract DNA showing an unexpected diversity of genomes in soil. At the end of the review a brief outlook is given on the future of soil microbiology which ranges from in situ identification of bacteria, to routine assays of microbial communities by microarray technology.  相似文献   
83.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   
84.
马铃薯红外干燥特性研究   总被引:1,自引:0,他引:1  
以马铃薯为原料,研究其红外干燥特性及数学模型。通过试验收集了不同切片厚度和干燥温度下马铃薯水分比(MR)随干燥时间(t)的变化数据,得到了马铃薯的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。结果表明,干燥温度(T)与切片厚度(L)对马铃薯红外干燥特性有较大影响,干燥温度越高,切片厚度越薄,马铃薯的干燥速率(DR)越快,干燥时间越短;同时,通过拟合计算发现,在10种干燥模型中Modified Henderson and Pabis的预测值与实测值比较吻合,能够更好地反映干燥过程。在试验条件下,Deff在0.238 4×10-10~12.557 3×10-10m~2·s-1之间,且随着干燥温度和切片厚度的增加而增大。1、3、5、7 mm厚的马铃薯片红外干燥活化能分别为34.386 0、31.041 8、28.783 2、30.060 1 k J/mol。  相似文献   
85.
Depending upon how soil is managed, it can serve as a source or sink for atmospheric carbon dioxide (CO2). As the atmospheric CO2 concentration continues to increase, more attention is being focused on the soil as a possible sink for atmospheric CO2. This study was conducted to examine the short-term effects of crop rotation and N fertilization on soil CO2 emissions in Central Iowa. Soil CO2 emissions were measured during the growing seasons of 2003 and 2004 from plots fertilized with three N rates (0, 135, and 270 kg N ha−1) in continuous corn and a corn–soybean rotation in a split-plot design. Soil samples were collected in the spring of 2004 from the 0–15 cm soil depth to determine soil organic C content. Crop residue input was estimated using a harvest index based on the measured crop yield. The results show that increasing N fertilization generally decreased soil CO2 emissions and the continuous corn cropping system had higher soil CO2 emissions than the corn–soybean rotation. Soil CO2 emission rate at the peak time during the growing season and cumulative CO2 under continuous corn increased by 24 and 18%, respectively compared to that from corn–soybean rotation. During this period, the soil fertilized with 270 kg N ha−1 emitted, on average, 23% less CO2 than the soil fertilized with the other two N rates. The greatest difference in CO2 emission rate was observed in 2004; where plots that received 0 N rate had 31% greater CO2 emission rate than plots fertilized with 270 kg N ha−1. The findings of this research indicate that changes in cropping systems can have immediate impact on both rate and cumulative soil CO2 emissions, where continuous corn caused greater soil CO2 emissions than corn soybean rotation.  相似文献   
86.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   
87.
Soil enzymes are linked to microbial functions and nutrient cycling in forest ecosystems and are considered sensitive to soil disturbances. We investigated the effects of severe soil compaction and whole-tree harvesting plus forest floor removal (referred to as FFR below, compared with stem-only harvesting) on available N, microbial biomass C (MBC), microbial biomass N (MBN), and microbial biomass P (MBP), and dehydrogenase, protease, and phosphatase activities in the forest floor and 0–10 cm mineral soil in a boreal aspen (Populus tremuloides Michx.) forest soil near Dawson Creek, British Columbia, Canada. In the forest floor, no soil compaction effects were observed for any of the soil microbial or enzyme activity parameters measured. In the mineral soil, compaction reduced available N, MBP, and acid phosphatase by 53, 47, and 48%, respectively, when forest floor was intact, and protease and alkaline phosphatase activities by 28 and 27%, respectively, regardless of FFR. Forest floor removal reduced available P, MBC, MBN, and protease and alkaline phosphatase activities by 38, 46, 49, 25, and 45%, respectively, regardless of soil compaction, and available N, MBP, and acid phosphatase activity by 52, 50, and 39%, respectively, in the noncompacted soil. Neither soil compaction nor FFR affected dehydrogenase activities. Reductions in microbial biomass and protease and phosphatase activities after compaction and FFR likely led to the reduced N and P availabilities in the soil. Our results indicate that microbial biomass and enzyme activities were sensitive to soil compaction and FFR and that such disturbances had negative consequences for forest soil N and P cycling and fertility.  相似文献   
88.
以土壤微生物生物量和土壤酶活性等为土壤微生物变化指标,研究了含油污水长期灌溉对东北沈抚灌区农田土壤微生物的影响.结果表明:土壤微生物生物量碳和生物量氮随着污灌有机物污染程度的增加而增加,与土壤石油烃(TPH)含量极显著正相关,相关系数分别为0.955和0.962(P<0.01);与土壤多环芳烃(PAHs)含量也极显著正相关,相关系数为0.941和0.946(P<0.01).土壤酶活性分析表明,土壤脱氢酶和多酚氧化酶与土壤TPH含量极显著正相关,相关系数分别为0.977和0.958(P<0.01);与PAHs含量也极显著正相关,相关系数分别为0.997和0.977(P<0.01).土壤中的脲酶受污水灌溉中含N物质的影响与TPH含量显著相关,相关系数为0.713(P<0.05),与PAHs污染无明显相关性.而纤维素酶与土壤有机物污染无明显相关关系.土壤微生物生物量和土壤脱氢酶、多酚氧化酶可以作为污灌土壤TPH和PAHs污染敏感的生物学和生物化学指标.  相似文献   
89.
通过室内恒温(25℃)避光培养试验,研究了黑土环境中乙草胺的微生物降解特征。在适宜水分条件下,将土壤样品分别进行常规、灭菌、选择性抑菌剂加入等处理后培养并测定土壤乙草胺含量和土壤微生物量。结果显示:在灭菌土壤中乙草胺的残留量较未灭菌土壤显著增加,未灭菌土壤中乙草胺残留数量与微生物量变化密切相关,表明微生物活性是影响乙草胺降解的主要因素。适当的水分有益于土壤中微生物生长,从而促进了土壤中乙草胺的降解。加入青链霉素后乙草胺残留量远大于放线菌酮和常规培养,表明细菌比真菌具有更强的降解乙草胺的能力。随着乙草胺的施药量增加,初期微生物量显著降低,是导致乙草胺总降解率下降的主要原因。  相似文献   
90.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:2,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号