首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2462篇
  免费   101篇
  国内免费   188篇
林业   91篇
农学   89篇
基础科学   19篇
  1442篇
综合类   626篇
农作物   85篇
水产渔业   68篇
畜牧兽医   262篇
园艺   46篇
植物保护   23篇
  2024年   24篇
  2023年   37篇
  2022年   61篇
  2021年   70篇
  2020年   51篇
  2019年   67篇
  2018年   40篇
  2017年   66篇
  2016年   80篇
  2015年   144篇
  2014年   126篇
  2013年   112篇
  2012年   135篇
  2011年   178篇
  2010年   158篇
  2009年   175篇
  2008年   131篇
  2007年   173篇
  2006年   162篇
  2005年   121篇
  2004年   118篇
  2003年   73篇
  2002年   29篇
  2001年   29篇
  2000年   47篇
  1999年   53篇
  1998年   21篇
  1997年   40篇
  1996年   44篇
  1995年   44篇
  1994年   24篇
  1993年   17篇
  1992年   28篇
  1991年   18篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   9篇
  1986年   1篇
  1985年   4篇
  1956年   2篇
排序方式: 共有2751条查询结果,搜索用时 31 毫秒
221.
The availability of labile organic C for microbial metabolic processes could be an important factor regulating N2O emissions from tropical soils. We explored the effects of labile C on the emissions of N2O from a forest soil in the State of Rondônia in the southwestern quadrant of the Brazilian Amazon. We measured emissions of N2O from a forest soil after amendments with solutions containing glucose, water only or NO3. Addition of glucose to the forest soil resulted in very large increases in N2O emissions whereas the water only and NO3 additions did not. These results suggest a strong C limitation on N2O production in this forest soil in the southwestern Amazon.  相似文献   
222.
Effects of vegetation and nutrient availability on potentail denitrification rates were studied in two volcanic, alluvial-terrace soils in lowland Costa Rica that differ greatly in weathering stage and thus in availability of P and base cations. Potential denitrification rates were significantly higher in plots where vegetation had been left undisturbed than in plots where all vegetation had been removed continuously, and were higher on the less fertile of the two soils. The potential denitrification rates were correlated strongly with respiration rates, levels of mineralizable N, microbial biomass, and moisture content, and moderately well with concentrations of extractable NH inf4 sup+ , Kjeldahl N, and total C. In all plots, denitrification rates were stimulated by the removal of O2 and by the addition of glucose but not by the addition of water or NO inf3 sup- .This is Paper 2772 of the Forest Research Laboratory, Oregon State University  相似文献   
223.
Sodium N-methyldithiocarbamate (metam sodium) and 1,3 dichloropropene are widely used in potato production for the control of soil-borne pathogens, weeds, and plant parasitic nematodes that reduce crop yield and quality. Soil fumigation with metam sodium has been shown in microcosm studies to significantly reduce soil microbial populations and important soil processes such as C and N mineralization. However, few published data report the impact of metam sodium on microbial populations and activities in potato production systems under field conditions. Fall-planted white mustard (Brassica hirta) and sudangrass (Sorghum sudanense) cover crops may serve as an alternative to soil fumigation. The effect of metam sodium and cover crops was determined on soil microbial populations, soil-borne pathogens (Verticillium dahliae, Pythium spp., and Fusarium spp.), free-living and plant-parasitic nematodes, and C and N mineralization potentials under potato production on five soil types in the Columbia Basin of Eastern Washington. Microbial biomass C was 8–23% greater in cover crop treatments compared to those fumigated with metam sodium among the soil types tested. Replacing fumigation with cover crops did not significantly affect C or N mineralization potentials. Cumulative N mineralized over a 49-day laboratory incubation averaged 18 mg NO3-N kg−1 soil across all soil types and treatments. There was a general trend for N mineralized from fumigated treatments to be lower than cover-cropped treatments. Soil fungal populations and free-living nematode levels were significantly lowered in fumigated field trials compared to cover-cropped treatments. Fumigation among the five soil types significantly reduced Pythium spp. by 97%, Fusarium spp. by 84%, and V. dahliae by 56% compared to the mustard cover crop treatment. The percentage of bacteria and fungi surviving fumigation was greater for fine- than coarse-textured soils, suggesting physical protection of organisms within the soil matrix or a reduced penetration and distribution of the fumigants. This suggests the potential need for a higher rate of fumigant to be used in fine-textured soils to obtain comparable reductions in soil-borne pathogens.  相似文献   
224.
The influence of organic matter on the interactions between external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices, the bacterium Burkholderia cepacia and other soil microorganisms was studied in a root-free sand environment. Organic matter amendment, in terms of ground barley leaves, markedly increased the growth of the external mycelium of G. intraradices as estimated both with the fatty acid biomarker 16:1ω5 and hyphal length measurements. Mycelial proliferation of G. intraradices in sand with organic matter was unaffected by both inoculation with B. cepacia and a soil filtrate containing a mixed population of indigenous microorganisms. On the other hand, in the absence of organic matter, both inoculation with B. cepacia and the soil filtrate reduced the growth of G. intraradices, as estimated with measurements of 16:1ω5. In contrast, B. cepacia inoculation increased hyphal length density of G. intraradices in the absence of organic matter. Overall, the presence of external mycelium of G. intraradices increased the bacterial biomass and counteracted a suppressive effect of B. cepacia on the growth of saprotrophic fungi.  相似文献   
225.
The aim of the current study was to gain a better understanding of the changes that occur in soil microbial community and in its functional diversity as a result of the use of nematocide and biocide inhibitors in natural ecosystems. Both inhibitors are known to have a great effect on the nematode community and total biota, playing an important role in soil food web and biota interactions. The experiment was set up in the Negev Desert using sixteen 1×1 m soil plots, to which two chemical inhibitors were applied: (a) a biocide, to eliminate the whole biotic community; and (b) a nematocide, to eliminate the nematode community in soil. In addition, water treatment was applied to the same soil plots, while untreated soil plots were used as control. Microbial functional diversity, together with abiotic parameters such as soil moisture and total organic carbon, was tested monthly in soil samples collected from the 0-10 and 10-20 cm soil layers. The results of the abiotic parameters showed similar patterns in the two soil layers regardless of the inhibitor treatments. An increase in soil water content followed rainfall patterns. Total organic carbon was low during the wet season and increased during the dry seasons. The Shannon-Weaver index value for microbial functional diversity was found to increase in spring after the wet season in both soil layers. In the upper soil layer, an increase was observed both in the inhibitor and water treatments. However, the increase in the water treatment lasted longer compared to the increase observed in the inhibitor-treated soil plots. In the 10-20 cm soil layer, a different pattern was observed: an increase in microbial functional diversity was observed in the inhibitor-treated soil plots, while an increase in the water-treated soil plots was seen at a later stage. Principal Component Analysis was also conducted, revealing different patterns between inhibitors and water treatments on both a temporal scale, when changes from a homogeneous to heterogeneous consumption pattern were observed, and in the nature of communities that proliferate in the soil. Differences were also observed in the microbial community between the upper 0-10 and the lower 10-20 cm soil layers, where an opposite pattern of substrate consumption was observed. This study emphasizes the important role the biotic component plays in the soil of an arid climate, studying the long-term effects of key species elimination on the microbial community in desert soil.  相似文献   
226.
The effects of irrigation-induced salinity and sodicity on the size and activity of the soil microbial biomass in vertic soils on a Zimbabwean sugar estate were investigated. Furrow-irrigated fields were selected which had a gradient of salinity and sugarcane yield ranging from good cane growth at the upper ends to dead and dying cane at the lower ends. Soils were sampled under dead and dying cane, poor, satisfactory and good cane growth and from adjacent undisturbed sites under native vegetation. Electrical conductivity (EC) and sodium adsorption ratio (SAR) of saturation paste extracts was measured, as well as the exchangeable sodium percentage (ESP). There was a significant negative exponential relationship between EC and microbial biomass C, the percentage of organic C present as microbial biomass C, indices of microbial activity (arginine ammonification and fluorescein diacetate hydrolysis rates) and the activities of the exocellular enzymes β-glucosidase, alkaline phosphatase and arylsulphatase but the negative relationships with SAR and ESP were best described by linear functions. By contrast, the metabolic quotient increased with increasing salinity and sodicity, exponentially with EC and linearly with SAR and ESP.Potentially mineralizable N, measured by aerobic incubation, was also negatively correlated with EC, SAR and ESP. These results indicate that increasing salinity and sodicity resulted in a progressively smaller, more stressed microbial community which was less metabolically efficient. The exponential relationships with EC demonstrate the highly detrimental effect that small increases in salinity had on the microbial community. It is concluded that agriculture-induced salinity and sodicity not only influences the chemical and physical characteristics of soils but also greatly affects soil microbial and biochemical properties.  相似文献   
227.
Summary The effects of 15 years of field applications of 2,4-dichlorophenoxy acetate (2,4-D) on soil microbial population and biochemical processes were studied in a field cropped with maize followed by potatoes. Amine or ester formulations at the rate of 0.95 kg 2,4-D per hectare applied in May and October every year. Fungal, bacterial, and actinomycete populations, and microbial biomass C and N were reduced by the 2,4-D treatment, the reduction being more marked where the ester was used. N mineralization, nitrification, and potentially mineralizable N were reduced by the 2,4-D ester only, while urease activity was depressed by both formulations. Dehydrogenase activity and soil microbial respiration tended to be temporarily increased by the amine, but were reduced substantially by the ester, indicating that the ester probably interfered with nutrient cycling.  相似文献   
228.
Summary The effects of heavy metals on microbial biomass and activity were investigated in 30 urban soils, contaminated mainly with Zn and Pb to different extents, in terms of the physicochemical and biological characteristics of the soils. Evaluated by simple and multiple regression analyses, the microbial biomass was not affected significantly by easily soluble Zn + Pb (extractable with 0.1 NHCI). The biomass was accounted for as a function of cation exchange capacity (CEC), total organic C and the numbers of fungal colonies present (R 2 = 0.692). Carbon dioxide evolution from soils, which reflected microbial activity, was studied on soils incubated with microbial-promoting substrates (glucose and ammonium sulfate) or without. Carbon dioxide evolution was negatively related to Zn+Pb, and this inhibitory effect of the metals was greater in the soils incubated with substrates. Carbon dioxide evolution in soils with substrates was closely related to Zn+Pb, bacterial numbers and the numbers of fungal colonies (R 2 = 0.718). Carbon dioxide evolution in soils without substrates was accounted for as a function of Zn + Pb, biomass and the C/N ratio (R 2 = 0.511). Using these relationships, the effects of heavy metals on soil microorganisms are discussed in terms of metabolically activated and dormant populations.  相似文献   
229.
There are currently two approaches that use whole soil to determine community level physiological profiles (CLPP) based on C-substrate utilization. We assessed the Degens and Harris and MicroResp™ approaches for their ability to distinguish between previously mined and non-mined forest soils that are characterized by gradients in biological, chemical and physical properties. Surface soils (0-5 cm) were collected from two ages of forest rehabilitation (3- and 16-years post mining), within mounds and furrows (caused by contour ripping) and from adjacent non-mined forest soil. Microbial respiration response to individual substrates was six times greater from the Degens and Harris (1.84 μg CO2-C g soil h−1) than the MicroResp™ (0.31 μg CO2-C g soil h−1) approach. The MicroResp™ approach was able to distinguish between CLPP of the two ages of rehabilitation (P=0.05), whereas the Degens and Harris approach did not. Neither approach identified an overall difference between the CLPP of mined and adjacent non-mined forest. The MicroResp™ approach revealed a significant difference (P=0.03) in CLPP from mounds of the two rehabilitation ages but no differences between the furrows. In addition there was a difference (P=0.03) in CLPP between the mounds and furrows within the 3-year old rehabilitation but no difference between the mounds and furrows within the 16-year-old rehabilitation. However, the CLPP of mounds of the 3-year old rehabilitation were different (P=0.059) to adjacent non-mined forest, while the furrows were not. There was no difference in CLPP between the mounds or the furrows of the 16-year-old rehabilitation and adjacent non-mined forest. These results suggest that the aspect of microbial heterotrophic function measured in this study takes up to 3 years to re-establish in the furrows and between 3-16 years in the mounds of post-mined rehabilitation soils. Our results also indicated that the MicroResp™ was substantially better than the Degens and Harris approach in distinguishing between treatments; this is likely to be due to differences in substrate concentrations and soil water potentials between approaches. Testing of a more comprehensive range of organic compounds would likely provide greater ecological interpretation of the CLPP data.  相似文献   
230.
Temporal dynamics of microbial biomass and respiration of soil and their responses to topography, burning, N fertilization, and their interactions were determined in a temperate steppe in northern China. Soil microbial indices showed strong temporal variability over the growing season. Soil microbial biomass C (MBC) and N (MBN) were 14.8 and 11.5% greater in the lower than upper slope, respectively. However, the percentage of organic C present as MBC and the percentage of total N present as MBN were 16.9 and 26.2% higher in the upper than lower slope, respectively. Neither microbial respiration (MR) nor metabolic quotient (qCO2) was affected by topography. Both MBC and MBN were increased by burning, on average, by 29.8 and 14.2% over the growing season, and MR and qCO2 tended to reduce depending on the sampling date, especially in August. Burning stimulated the percentage of organic C present as MBC and the percentage of total N present as MBN in the upper slope, but did not change these two parameters in the lower slope. No effects of N fertilization on soil microbial indices were observed in the first growing season after the treatment. Further research is needed to study the long-term relationships between changes in soil microbial diversity and activity and plant community in response to burning and N fertilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号