首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2460篇
  免费   99篇
  国内免费   188篇
林业   91篇
农学   89篇
基础科学   19篇
  1441篇
综合类   625篇
农作物   85篇
水产渔业   67篇
畜牧兽医   261篇
园艺   46篇
植物保护   23篇
  2024年   22篇
  2023年   36篇
  2022年   61篇
  2021年   70篇
  2020年   51篇
  2019年   67篇
  2018年   40篇
  2017年   66篇
  2016年   80篇
  2015年   143篇
  2014年   126篇
  2013年   112篇
  2012年   135篇
  2011年   178篇
  2010年   158篇
  2009年   175篇
  2008年   131篇
  2007年   173篇
  2006年   162篇
  2005年   121篇
  2004年   118篇
  2003年   73篇
  2002年   29篇
  2001年   29篇
  2000年   47篇
  1999年   53篇
  1998年   21篇
  1997年   40篇
  1996年   44篇
  1995年   44篇
  1994年   24篇
  1993年   17篇
  1992年   28篇
  1991年   18篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   9篇
  1986年   1篇
  1985年   4篇
  1956年   2篇
排序方式: 共有2747条查询结果,搜索用时 46 毫秒
171.
为了考察碱/炭比、炭化温度以及活化温度对活性炭纤维孔结构的影响,以木粉为原料经液化、纺丝、固化、炭化及KOH活化工艺过程制备了木材苯酚液化物活性炭纤维;采用正交实验方法优化了活性炭纤维制备工艺。结果表明:诸因素中的显著性依次为活化温度〉炭化温度〉碱/炭比;优化组活性炭纤维的比表面积为1546m^2/g;400℃炭化温度下制备的活性炭纤维具有较高的中孔比率。  相似文献   
172.
BOD快速测定仪利用微生物传感器快速测定水体中BOD,该方法具有较高的准确度和精密度,分析速度快,可以实现样品分析自动化,适用于多种水体BOD的检测。  相似文献   
173.
探讨了电融合前对重构卵继续孵育及激活剂6-DMAP不同作用时间对山羊核移植胚胎体外发育的影响。结果显示,重构卵在成熟液中继续培养后,9~10 h组的融合后卵子死亡率(27.42%)显著低于30 min和90 min组(49.26%和56.3%)(P0.05),胚胎卵裂率(68.15%)则显著高于30 min和90 min组(55.6%和54.24%)(P0.05);重构卵用离子霉素激活后,再用6-DMAP激活0 h、2 h、3 h、4 h、5 h及8~10 h,各组间的胚胎卵裂率均无显著差异(P0.05),但均显著高于未用6-DMAP组的卵裂率(P0.05)。本试验结果表明,电融合前,继续成熟培养重构卵有利于降低电融合时的卵子死亡率,提高卵子利用率;联合使用离子霉素和6-DMAP有利于提高激活效果,而6-DMAP的作用时间(2~10 h)不影响核移植胚胎的卵裂。  相似文献   
174.
Five hormonal treatments with human chorionic gonadotropin (hCG) were tested for the induction of maturation and spermiation in male farmed eels. The main aim was to optimize previously used hormonal treatments to achieve shorter induction treatments, longer spermiation periods and/or higher sperm quality. Fish treated for just 3 weeks (treatment E) or until the onset of spermiation (treatment C) showed the worst results, while the treatment consisting of weekly administration of 1.5 IU hCG g?1 fish (treatment A) induced the highest percentage of spermiating males, the highest number of sperm samples and sperm volumes and densities similar to the rest of the treatments (B: half hormone dosage, or D: biweekly administration). Evaluation of the sperm quality was performed by computer‐assisted sperm analysis (CASA), considering the percentage of total motile spermatozoa, the percentage of fast and medium‐velocity spermatozoa, as well as different motility parameters. Sperm samples from A‐D groups showed between 44% and 54% motile spermatozoa, and between 10% and 15% fast spermatozoa, while samples from E‐treated males showed 0% motile cells. No significant differences were found in the spermatozoa straight line velocity (VSL), curvilinear velocity (VCL) or the angular velocity (VAP), neither spermatozoa beating cross frequency (BCF) between A–D groups.  相似文献   
175.
Arbuscular mycorrhizal (AM) fungi can confer protection to host plants against some root pathogens, and several mechanisms for these phenomena have been proposed. If AM fungal taxa vary in the ways that they limit the negative effects of pathogens on host plants, additive and/or synergistic interactions among members of diverse AM fungal assemblages and communities may result in a greater pathogen protection than is currently predicted. However, in a review of the literature on interactions between AM and pathogenic fungi, we found few examples that compared the effectiveness of single- and multi-species AM fungal assemblages. Here, we briefly recount the generally recognized mechanisms of pathogen protection by AM fungi and present evidence, where appropriate, for functional diversity among AM fungal taxa with regard to these mechanisms. We propose that functional complementarity of AM fungal taxa in interactions with pathogens could mimic, or even be the cause of, previously observed relationships between AM fungal diversity and plant productivity.  相似文献   
176.
The aim of the present study was to investigate the microbial activity along forest brown soil profiles sequence developed on different lithological substrates (carbonate or non-carbonated cement in sandstone formations) at different altitudes. The main question posed was: does carbonate affect the biochemical activity of brown soil profiles at different altitudes? For the purpose of this study, four soil profiles with different amounts and compositions of SOM developed on different lithological substrates were selected: two with carbonate (MB and MZ) and the other two with non-carbonated cement in the sandstone formations (MF1 and MF2). Chemical and biochemical properties of soil were analysed along soil profiles in order to assess the SOM quantity and quality, namely total organic C (Corg), water extractable organic C (WEOC) and humification indices (HI, DH, HR). Microbial biomass (Cmic and Nmic) content, as well as the specific activities of acid phosphatase, β-glucosidase and chitinase enzymes were chosen as indicators of biochemical activity. The soil biochemical properties provided evidence of better conditions for microorganisms in MB than in MF1, MF2 and MZ soil profiles, since patterns of microbial biomass content and activity might be expected in response to the amount and quality of organic substances. The different lithological substrates did not show any clear effect on soil microbial biomass content, since similar values were obtained in MF1, MF2 (with non-carbonated cement) and MZ (with carbonate). However, the specific activities of acid phosphatase (per unit of Corg and per unit of Cmic) were higher in soils with no carbonate (MF1 and MF2) than in soils with carbonate (MB and MZ). In conclusion, the biochemical activity along brown soil profiles was mainly regulated by different soil organic matter content and quality, while the two different lithological substrates (with carbonate or non-carbonated cement in the sandstone formations) did not show any direct effect on microbial biomass and its activity. However, the activity of acid phosphatase per unit of C was particularly enhanced in soil with non-carbonate cement in the sandstone formations.  相似文献   
177.
Plant species exert strong effects on ecosystem functions and one of the emerging, and difficult to test hypotheses, is that plants alter soil functions through changing the community structure of soil microorganisms. We tested the hypothesis for atmospheric CH4 oxidation by using soil samples from a Siberian afforestation experiment and exposing them to 13C-CH4. We determined the activity of the soil methanotrophs under different tree species at three levels of initial CH4 concentration (30, 200 and 1000 ppm) thus distinguishing the activities of low- and high-affinity methanotrophs. Half of the samples were incubated with 13C-enriched CH4 (99.9%) and half with 12C-CH4. This allowed an estimation of the amount of 13C incorporated into individual PLFAs and determination of PLFAs of methanotrophs involved in CH4 oxidation at the different CH4 concentrations. Tree species strongly altered the activity of atmospheric CH4 oxidation without appearing to change the composition of high-affinity methanotrophs as evidenced by PLFA 13C labeling. The low diversity of atmospheric CH4 oxidizers, presumably belonging to the UCSα group, may explain the lack of tree species effects on the composition of soil methanotrophs. We submit that the observed tree species effects on atmospheric CH4 oxidation indicate an effect on biomass or cell-specific activities rather than by a community change and this may be related to the impact of the tree species on soil N cycling.  相似文献   
178.
Field data have shown that soil nitrifying communities gradually adapt to zinc (Zn) after a single contamination event with reported adaptation times exceeding 1 year. It was hypothesized that this relatively slow adaptation relates to the restricted microbial diversity and low growth rate of the soil nitrifying community. This hypothesis was tested experimentally by recording adaptation rates under varying nitrification activities (assumed to affect growth rates) and by monitoring shifts in community composition. Soils were spiked at various Zn concentrations (0-4000 mg Zn kg−1) and two NH4+-N doses (N1, N2) were applied to stimulate growth. A control series receiving no extra NH4+-N was also included. Soils were incubated in pots under field conditions with free drainage. The pore water Zn concentration at which nitrification was halved (EC50, mg Zn l−1) did not change significantly during 12 months in the control series (without NH4+-N applications), although nitrification recovered after 12 months at the highest Zn dose only. The EC50 after 12 months incubation increased by more than a factor 10 with increasing NH4+-N dose (p < 0.05) illustrating that increased activity accelerates adaptation to Zn. Zinc tolerance tests confirmed the role of Zn exposure, time and NH4+-N dose on adaptation. Zinc tolerance development was ascribed to the AOB community since the AOB/AOA ratio (AOB = ammonia oxidizing bacteria; AOA = ammonia oxidizing archaea) increased from 0.4 in the control to 1.4 in the most tolerant community. Moreover, the AOB amoA DGGE profile changed during Zn adaptation whereas the AOA amoA DGGE profile remained unaffected. These data confirm the slow but pronounced adaptation of nitrifiers to Zn contamination. We showed that adaptation to Zn was accelerated at higher activity and was associated with a shift in soil AOB community that gradually dominated the nitrifying community.  相似文献   
179.
This study aimed to reveal differences in the relevance of particulate as well as water-soluble organic matter (OM) fractions from topsoils to the easily biodegradable soil organic matter (SOM). We selected eight paired sites with quite different soil types and soil properties. For each of these sites, we took samples from adjacent arable and forest topsoils. Physically uncomplexed, macro-, and micro-aggregate-occluded organic particle, as well as water-soluble OM fractions were sequentially separated by a combination of electrostatic attraction, ultrasonic treatment, density separation, sieving, and water extraction. The easily biodegradable SOM of the topsoil samples was determined by measuring microbial respiration during a short-term incubation experiment (OCR). The organic carbon (OC) contents separated by i) the physically uncomplexed water-soluble OM, ii) the macro-, and iii) the micro-aggregate-occluded organic particle as well as water-soluble OM fractions were significantly correlated with OCR. The correlation coefficients vary between 0.54 and 0.65 suggesting differences in the relevance of these OM fractions to the easily biodegradable SOM. The strongest correlation to OCR was detected for the OC content separated by the physically uncomplexed water-soluble OM indicating the most distinct relation to the easily biodegradable SOM. This was found to be independent from land use or soil properties.  相似文献   
180.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号