首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   26篇
  国内免费   11篇
林业   44篇
农学   60篇
基础科学   3篇
  107篇
综合类   65篇
农作物   62篇
水产渔业   3篇
畜牧兽医   53篇
园艺   15篇
植物保护   21篇
  2023年   3篇
  2022年   8篇
  2021年   13篇
  2020年   12篇
  2019年   16篇
  2018年   15篇
  2017年   14篇
  2016年   21篇
  2015年   17篇
  2014年   10篇
  2013年   27篇
  2012年   19篇
  2011年   27篇
  2010年   16篇
  2009年   25篇
  2008年   21篇
  2007年   18篇
  2006年   12篇
  2005年   11篇
  2004年   13篇
  2003年   5篇
  2002年   5篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   9篇
  1992年   4篇
  1991年   10篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1955年   1篇
排序方式: 共有433条查询结果,搜索用时 78 毫秒
121.
亚高山草甸十种多年生植物种间非同步性生长   总被引:2,自引:0,他引:2  
本文以亚高山草甸群落中较常见的10个种群为材料,通过定株定期测定,研究了种间单株生物量动态在时间上的差异。研究结果表明,此10个种群在到达最大生物量的时间上有差异,且同一时间内,10个种群间单株生物量相对增长率显著不同。这一结果揭示了草本植物群落中一些常见组分,种间通过在诸如土壤矿物质等资源消费时间上的错位,缓冲了种间竞争,从而得以共存。  相似文献   
122.
Over the last three decades, farming systems in Europe and Australia have seen a decline in legume plantings, leading to reduced soil carbon and fertility, and an increase in plant disease, reliance on industrial nitrogen fertilizer and herbicides. In Australia, one reason for this decline has been the movement towards sowing crops and forages into dry soil, before the opening rains, as a consequence of climate variability. This practice predicates against the survival of rhizobial inoculants, and hence generates uncertainty about legume performance. The research reported here was initiated to improve the robustness of a specific forage legume/rhizobia symbiosis to increase nitrogen fixation in low pH, infertile soils. Rhizobial strains (Rhizobium leguminosarum biovar viciae) from Pisum sativum L. were sourced from acid soils in southern Italy and southern Australia. Strains were evaluated for N fixation on the forage legumes P. sativum, Vicia sativa and Vicia villosa, then for survival and persistence in acid soils (pHCa 4.6). Fourteen of the strains produced a higher percentage of nitrogen derived from the atmosphere (%Ndfa) compared to commercial comparator strain SU303 (<78%). Twenty‐two strains survived sufficiently into the second season to form more nodules than SU303, which only achieved 3% of plants nodulated. Elite strains WSM4643 and WSM4645 produced six times more nodulated plants than SU303 and had significantly higher saprophytic competence in acid soil. These strains have the ability to optimize symbiotic associations with field peas and vetch in soils with low fertility, carbon and pH that are restrictive to the current commercial strain SU303.  相似文献   
123.
Climate variability and current farming practices have led to declining soil fertility and pH, with a heavy reliance on fertilizers and herbicides. The addition of forage and grain legumes to farming systems not only improves soil health but also increases farm profitability through nitrogen (N) fertilizer cost offsets. However, the formation of effective symbioses between legumes and rhizobia can be unreliable and is considered at risk when combined with dry sowing practices such as those that have been designed to obviate effects of climate change. This research was initiated to improve the robustness of the legume/rhizobia symbiosis in low pH, infertile and dry soils. Production from two cultivars of field pea (Pisum sativum) and two species of vetch (Vicia spp.), and symbiotic outcomes when inoculated with a range of experimental rhizobial strains (Rhizobium leguminosarum biovar viciae), was assessed in broad acre field trials which simulated farmer practice. New rhizobia strains increased nodulation, N fixation, produced more biomass and higher seed yield than comparator commercial strains. Strain WSM4643 also demonstrated superior survival when desiccated compared to current commercial strains in the laboratory and on seed when delivered as inoculant in peat carriers. WSM4643 is a suitable prospect for a commercial inoculant in Australia and other agricultural areas of the world where growing peas and vetch on soils generally considered problematic for this legume/rhizobia symbiosis. A particular advantage of WSM4643 may be that it potentiates sowing inoculated legumes into dry soil, which is a contemporary response by farmers to climate variation.  相似文献   
124.
Warm‐season grasses and legumes have the potential to provide forage throughout the Mediterranean summer when there are high temperatures and low rainfall and when cool‐season grasses become less productive. Twenty‐nine non‐native, warm‐season pasture species (twenty‐three grasses and six legumes) were assessed for their adaptability to the coastal plain of southern Italy in terms of their productivity and nutritional quality. The investigated species were compared with two reference species widely used in a Mediterranean environment: a grass (Festuca arundinacea) and a legume (Medicago sativa). The species differed in their phenological and biological characteristics, i.e. start of vegetative resumption, first flowering and cold resistance, from each other and from the control species. From the second year after establishment, warm‐season perennial grasses had high dry‐matter (DM) yields and, in many cases, a more than adequate nutritional quality. As for legumes, the control, M. sativa gave the best results in all the investigated characters. Among the grasses, seven species (Chloris gayana, Eragrostis curvula, Panicum coloratum, Paspalum dilatatum, Pennisetum clandestinum, Sorghum almum, Sorghum spp. hybrid) had DM yields greater than the control species and had their maximum growth during the hottest period of the year, when F. arundinacea, the control grass species, was dormant. Eragrostis curvula had the highest annual DM yield (21·1 t ha?1) and P. clandestinum provided the best combination of agronomic and yield characteristics which were similar to those of M. sativa. The seven above‐mentioned species have the potential to supply hay or grazing and contribute to broadening and stabilizing the forage production calendar in Mediterranean‐type environments.  相似文献   
125.
A nutritional study ofDioclea grandiflora (Mucuna) andDioclea sclerocarpa, two legume seeds related toCanavalia which grow extensively in South America and are used as a human food source, has been carried out. Whilst both seeds, when fed to rats at a level equivalent to 100g seed protein kg–1 diet gave poor nutritional performance, the anti-nutritional factors involved were apparently different. WithDioclea grandiflora, the presence in the seed of a soluble small molecular weight component, which caused food intake to be reduced to levels well below that required to meet minimum protein, energy, vitamin and mineral requirements, led to poor growth. This factor could be reduced substantially by exhaustive dialysis or by aqueous ethanol extraction of the meal. These procedures may have potential practical applications. In addition, the constitutent lectin, which was partially resistant in vitro and in vivo to degradation by gastrointestinal enzymes, also contributed to growth depression. WithDioclea sclerocarpa, a non-haemagglutinating pH 7 soluble factor was primarily responsible for the poor performance of rats. This factor could not be removed by exhaustive dialysis. The apparently poor protein digestibility observed may be due to increased secretion of endogenous nitrogen.  相似文献   
126.
Seeds of 28 wild growing legumes of India were analysed for their protein content and amino acid compositions. A wide variation was observed in protein contents (18.3 to 50.9%). The amino acid composition and protein content of some of these seeds were in close proximity to that of soybean; however, some legumes registered a higher level of certain amino acids and protein as compared to the latter.  相似文献   
127.
Field experiments were conducted at two different locations under rainfed conditions of Punjab, Pakistan to assess nodulation, nitrogen fixation and nutrient uptake by chickpea (Cicer arietinum L.) in response to application of three rates [0, 40, and 80 kg phosphorus pentoxide (P2O5 ha?1)] of phosphorus and three rates (0, 15 and 30 kg S ha?1) of sulfur in different combinations. Effect of phosphorus application was nonsignificant while that of sulfur was significant on percent nitrogen derived from atmosphere. Both phosphorus and sulfur application resulted in increase in nitrogen fixation up to 38% and 33% over control, respectively. Nutrient uptake [nitrogen (N), phosphorus (P), and sulfur (S)] increased significantly with the application of phosphorus and sulfur and correlated positively with nitrogen fixation. There is direct involvement of sulfur in the process of nitrogen fixation whereas effect of phosphorus on nitrogen fixation is indirect mainly through enhanced growth and dry matter production.  相似文献   
128.
Abstract

The study was carried out in dryfarming areas in Ankara, Turkey, over 2 years (2001 – 2002 and 2002 – 2003). The objective was to determine different soil tillage and weed control methods on weed biomass and yield components, yield of lentil (Lens culinaris). This study compared the effects of two tillage systems (shallow minimum tillage and traditional tillage) and three weed control methods (weedy check, hand weeding and herbicide) on weed biomass, growth characteristics, seed yield and some yield components of lentil. Significant differences were found among weed control methods for weed biomass and yield parameters of lentil. Tillage systems had no significant effect on weed biomass or yield of lentil. The highest yield and lowest weed biomass was found in the hand-weeded treatment compared to the other weed control methods. Results of this research indicate that weeds are a main constraint for lentil growing under dryland conditions. Grain yield of lentil was reduced more than 60% due to uncontrolled weeds.  相似文献   
129.
Abstract

The current study examined the capacity of different temporary grassland legume–grass mixtures under different N supply levels to supply similar amounts of elements in systems where the herbage is cut for feed. Mixtures showed a good robustness in supplying equal amounts of mineral elements in the combined herbage as well as equal concentrations in dry matter of mineral elements compared with the same species in monocultures. The reasons for the mixed systems to be able to buffer differences in N supply levels as well as different compositions of the mixtures were that legume leaves and stems had similar concentrations of mineral elements, whether in monocultures or in mixtures with grasses. Grasses in mixture with legumes had however higher N, Ca, S, Zn, Cu and tended to have higher Mg concentration, both in stems and leaves, while Mn were less concentrated in mixtures’ dry matter. Further, the mixtures doubled their dry matter accumulation in the two weeks just around grass heading. The systems partly buffered the time-wise differences in the sense that the P accumulation paralleled dry matter but the N was diluted. This was mirrored in a decrease in N concentration and maintenance of the concentration level of P and other elements. As the stem–leaf ratio was higher (p<0.05) in festulolium than in ryegrass and as the stems of festulolium have lower concentrations of N, K, Ca, S, Mg, Fe and Cu than leaves, the mixtures including festulolium had a rapidly declining proportion of these elements in the combined mixtures’ dry matter. Management options in improving the mineral supplies are thus to choose species when establishing the temporary grasslands according to functionality, to manipulate the content of legumes by the N supply level, and to time the harvest of the herbage.  相似文献   
130.
ABSTRACT

Uncertainties exist about the importance of rhizobia inoculant and starter nitrogen (N) application in dry pea (Pisum sativum L.) production. Three field experiments were conducted to evaluate how rhizobia inoculant and starter N fertilizer affect pea seed yield and protein concentration in a semi-arid environment in central Montana. Commercial rhizobia inoculant was mixed with seed prior to planting at the manufacturer’s recommended rate. Starter N fertilizers were applied into the same furrow as seed at 0, 22, 44 and 88 kg ha?1 as urea, slow-release polymer-coated N fertilizer (ESN), and a combination of both. The application of rhizobia inoculant had no or a very small beneficial effect on pea yield in lands with a previous history of peas. In a land without pea history, application of rhizobia increased pea seed yield by 16%. The positive effect of starter N was only pronounced when initial soil N was low (≤ 10 kg ha?1 nitrate-nitrogen), which increased net return by up to US$ 42 ha?1. In this condition, application of slow-release N outperformed urea. However, application of starter N (especially with urea) had a negative effect on pea establishment, vigor and seed yield when soil initial N was high (≥ 44 kg ha?1 NO3-N). The results indicate that the rate, placement and form of the starter N must be optimized to benefit pea yield and protein without detrimental effects on germination and nodulation. Moreover, application of starter N must be guided by the soil nitrate content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号