首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2622篇
  免费   138篇
  国内免费   1227篇
林业   121篇
农学   57篇
基础科学   47篇
  3014篇
综合类   581篇
农作物   44篇
水产渔业   18篇
畜牧兽医   27篇
园艺   27篇
植物保护   51篇
  2024年   19篇
  2023年   84篇
  2022年   80篇
  2021年   97篇
  2020年   108篇
  2019年   149篇
  2018年   144篇
  2017年   178篇
  2016年   198篇
  2015年   180篇
  2014年   160篇
  2013年   282篇
  2012年   407篇
  2011年   169篇
  2010年   179篇
  2009年   171篇
  2008年   128篇
  2007年   131篇
  2006年   150篇
  2005年   107篇
  2004年   100篇
  2003年   91篇
  2002年   71篇
  2001年   68篇
  2000年   68篇
  1999年   64篇
  1998年   65篇
  1997年   66篇
  1996年   51篇
  1995年   48篇
  1994年   46篇
  1993年   35篇
  1992年   23篇
  1991年   8篇
  1990年   18篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   8篇
  1981年   1篇
排序方式: 共有3987条查询结果,搜索用时 31 毫秒
951.
沼液化肥全氮配比对土壤微生物及酶活性的影响   总被引:2,自引:1,他引:2  
通过田间试验,研究了N-P2O5-K2O(120-90-135 kg/hm2)施用量相同的条件下,沼液化肥不同全氮配比(沼液全氮分别占0%、15%、30%、45%和100%)对旱地红壤微生物(细菌、真菌、放线菌)数量、酶(脲酶、脱氢酶)活性和硝化强度的影响。结果表明,随沼液全氮比例的增加,土壤细菌、放线菌、真菌数量均呈倒"U"形增加,且较单施化肥处理(未施沼液)分别提高3.88%~40.78%、1.64%~31.15%、28.21%~79.49%。随着花生生育进程的推进,脲酶活性随沼液全氮比例增加而升高;脱氢酶活性先降低,开花期后升高。沼液全氮45%处理显著提高了花生结荚期和收获期土壤脲酶、脱氢酶活性和硝化强度。利用主成分分析对土壤微生物活性进行综合评价,依据主成分解释总变量和碎石图提取了2个主成分反映原变量的92.13%的信息。第1主成分主要综合了细菌、真菌、放线菌数量、微生物总量和硝化强度的信息;第2主成分主要综合了脲酶、脱氢酶活性的信息。主成分综合得分图直观地显示了等氮磷钾条件下沼液化肥全氮配比对旱地红壤微生物活性的综合影响。具体为BS30BS45BS100BS15NPKCK。因此,等氮磷钾条件下沼液全氮15%~100%处理有利于提高土壤微生物活性,特别是沼液全氮30%处理,同时其花生籽粒产量也达到了最大值(2 875 kg/hm2)。  相似文献   
952.
为摸清我国主产烟区烟田土壤农药残留状况,从全国13个主要植烟省的代表性植烟县市采集了431个土壤样品,采用气相色谱法测定分析了土壤中有机氯和有机磷农药残留。结果表明:六六六及滴滴涕含量均未超标,有机磷类农药含量均较低。六六六检出率为100%,含量范围为1.01~10.74μg/kg,平均为2.80μg/kg;滴滴涕检出率为100%,含量范围为0.18~410.88μ.g/kg,平均为15.44μg/kg;敌敌畏检出率为97.1%,含量范围为ND~2.01μg/kg,平均为0.27μg/kg;乐果检出率为63.6%,含量范围为ND~1.77μg/kg,平均为0.18μg/kg;甲基对硫磷检出率为88.8%,含量范围为ND~1.20μg/kg,平均为0.14μg/kg;马拉硫磷检出率为100%,含量范围为0.09~7.95μg/kg,平均为1.29μg/kg;对硫磷检出率为99.5%,含量范围为ND~3.46μg/kg,平均为0.5μg/kg。  相似文献   
953.
基于改进萤火虫算法的土壤水分特征曲线参数优化   总被引:1,自引:4,他引:1  
针对因参数精度不足,影响相关土壤水分运动建模、仿真结果等问题,引入萤火虫算法,并将固定随机步长改进为随萤火虫间距离变化的可变步长,旨在解决土壤水分特征曲线Van Genuchten模型参数优化的非线性拟合问题。结果表明:对不同深度的黑土和黏土的脱湿过程进行模拟,得到优化后的相关参数及体积含水率计算值。通过与粒子群算法、遗传算法对比,表明萤火虫算法模拟结果精度高,曲线吻合性好,最大相对误差仅在2%左右,是一种高精度的优化算法,且改进之后收敛效率提高。利用萤火虫算法解决这类非线性优化问题是可行的,尤其在对精度、准确性要求较高及需为后续研究确定其他土壤水分运动参数提供准确依据的情况下,适用性更强。  相似文献   
954.
生物炭对粉黏壤土水力参数及胀缩性的影响   总被引:3,自引:2,他引:3  
赵迪  黄爽  黄介生 《农业工程学报》2015,31(17):136-143
该文选取2种粒径(细炭0.013~0.048 mm、粗炭0.3~0.7 mm)的生物炭,以2种质量百分比(3%、6%)施入一种粉黏壤土,通过测定不同粒径生物炭及施加比例下土壤的水分特征曲线、饱和水力传导度、收缩性及饱和膨胀率,研究生物炭对粉黏壤土水力参数及胀缩性的影响。结果表明,2种粒径及添加比例的生物炭均降低了粉黏壤土的持水能力。但4种添加生物炭处理相互之间持水能力差异不显著。生物炭可降低粉黏壤土中极微孔隙和中大孔隙的比例,提高微孔隙和小孔隙所占的比例。生物炭的添加降低了该粉黏壤土的饱和含水率和凋萎系数。细炭对粉黏壤土的田间持水率没有显著影响,粗炭降低了粉黏壤土的田间持水率。两种粒径的生物炭均可提高粉黏壤土的有效含水率,并降低离心失水过程中土壤的收缩,在这2方面细炭的影响效果比粗炭显著;细炭的添加对粉黏壤土饱和膨胀率没有显著影响,粗炭则降低了粉黏壤土的饱和膨胀率。2种粒径生物炭的添加均降低了该粉黏壤土的饱和水力传导度。3%和6%的添加比例在大部分研究指标中未表现出明显差异。该研究可为生物炭在土壤环境修复应用方面提供一定的理论指导。  相似文献   
955.
Effect of organic manure on organic phosphorus fractions in two paddy soils   总被引:11,自引:0,他引:11  
We investigated the transformation of the organic P fractions from organic manure in two paddy soils (Ultisol, Entisol) and the influence of organic manure or cellulose on organic P under anaerobic conditions. The results obtained from the P fractionation experiment indicated that during the incubation labile and moderately labile organic P fractions increased in the Ultisol and decreased in the Entisol, which might be related to the difference in the organic matter content of both soils. Immediately after the application of organic manure, a large part of labile and moderately labile organic P supplied with the manure was transformed into moderately resistant organic P, possibly Ca- or Mg-inositol P were transformed into Fe-inositol P. During anaerobic incubation, the labile forms of organic P in the soils treated with organic manure were increased along with the incubation period in the first 4 weeks. The change in the moderately labile fraction was dramatic. It increased sharply in the first 2 weeks, then decreased, which was more pronounced in the soils treated with pig faeces. The moderately resistant fraction decreased during the whole incubation period. This indicated that under anaerobic conditions, the moderately resistant fraction can be transformed into labile and moderately labile organic P fractions, perhaps as Fe3+-inositol P is reduced to Fe+2-inositol P. Cellulose as an organic substrate had an increasing effect on organic P, especially when it was combined with inorganic P. Therefore, it is suggested that the application of inorganic P fertilizer combined with organic manure may be an effective way of protecting inorganic P against intensive sorption in soils.  相似文献   
956.
土壤母质与茶叶质量的关系初探   总被引:2,自引:0,他引:2  
Six tea plantations with different soil-forming parent naterials,the same tea variety and tea age and similar landforms and management were selected to conduct a systematic study on the realtionship between soil properties and tea quality.The results showed that the quality of tea grown on the soil derived from dolomites,Quaternary red clays,were inferior.Further study showed that sandy soils were beneficial to improving amino acid content of tea ,and clayey soils made it decrease;high content of bases might decrease the contents of tea polypenols,caffeine,water extracts,but promote the content of amino acds;available phosphorous was significantly positively correlated with water extracts ,but significantly negatively correlated with caffeine;slowly avaiable potassium was positively correlated with amino acid content .Soil parent materials should be regarded as an important factor in eveluating the adatability of tea to soils.  相似文献   
957.
The advent of conservation tillage presents a need for a greater understanding of plant disease and disease interactions in temperate humid agriculture, where excessive crop residues, continuous moist soil conditions and soil compaction are potential constraints. In this review, biotic and abiotic factors, and aspects of microbial antagonism, which can influence plant disease development in the root zone, are characterized in the context of conservation tillage in humid climates.Soil densification and reduction in macroporosity can aggravate abiotic root disease. Changes in soil aeration and permeability status can alter the quantitative and qualitative differences between soil rhizofloral populations, and survival and distribution of pathogen inoculum. Further-more, anaerobic soil conditions can result in root-pathogen interactions leading to plant disease development. A good quality soil physical environment is an important indicator for root health under conservation tillage in humid climates.Conservation tillage tends to concentrate plant debris and consequently microbial biomass in the top 5 to 15 cm of soil, and thus promotes survival of pathogens. However, disease-causing microbes make up only a proportion of the rhizofloral population. Relatively high soil microbial activity can lead to competition effects that may ameliorate pathogen activity and survival, and counteract a high pathogen inoculum pressure. Microbial antagonism in the root zone can lead to the formation of disease-suppressive soils. This phenomenon, which is important for the adoption of conservation tillage in humid climates, can be influenced by soil and crop management practices, especially crop rotation.  相似文献   
958.
The acidic, sandy soils in the southeastern US are phosphorus (P) limited for forest production and are commonly fertilized with P. There is no P retention capacity in the A horizon. However, microbial biomass may immobilize and retain P fertilizer before it is leached below seedling rooting depth making P fertilization more efficient. An accurate estimation of microbial P is dependent on measuring the Kp factor in the fumigation-extraction method. The overall purpose of this study was to examine the fumigation-extraction method for microbial P in acidic, forested, sandy soils. The three objective were: to determine which extractant was the most useful extracting microbial P by comparing the standard basic extractant, 0.5 M NaHCO3 at pH 8.5, against several acidic and oxalate extractants; to evaluate whether soil water potential influenced the Kp factor; and to test whether the Kp factor differed by soil horizon within the profile of a representative Flatwoods Spodosol. Three millimolar oxalate was determined to be the preferred extractant due to its efficient removal of microbial P and ease of analysis. The Kp factor was dependent on soil water potential and horizon. The range in Kp at different water potentials using 3 mM oxalate was from 0.31 to 0.67 in the A horizon, 0.48 to 0.91 in the E horizon, and 0.22 to 0.45 in Bh horizon. The highest Kp factors tended to be at water potentials near saturation and under the driest condition. Differences in Kp were attributed to the influence that water potential and soil horizon had on microbial assemblages and diversity. Using a literature value of Kp, instead of measuring Kp directly, caused an overestimate of −7 to 63% in the A horizon, 63-160% in the E horizon and 7-32% in the Bh horizon. The best estimate of microbial P required that Kp be evaluated for specific soil conditions.  相似文献   
959.
We compared the elemental composition of soil and bedrock samples to determine the extent of chemical weathering and the nature of the soil parent material in alpine soils on Vermont's highest summit. Previously it was unclear whether these soils formed through weathering of bedrock, glacial till, or eolian sediment, or solely through the accumulation of organic matter. In eighteen profiles, no evidence was found to indicate that soils have developed in glacial till, despite evidence that the mountain was completely inundated by the Laurentide Ice Sheet. In contrast, results strongly support the theory that pedogenesis in this environment involves in situ bedrock weathering under a thickening blanket of acidic organic litter. Weathering indices reveal an increase in weathering intensity upwards from the bedrock, and trends of normalized rare earth elements demonstrate a strong similarity between bedrock and soil samples. Leaching has concentrated less mobile elements such as Al, Cr, La, P, Pb, and Ti in soil horizons and removed mobile elements such as Co, Fe, K, Mg, Mn, Si, and Zn. X-ray diffraction reveals that chlorite, which is present in all bedrock samples and some saprolites, has weathered completely from upper soil horizons, and that hydrobiotite, vermiculite, kaolinite, gibbsite, and goethite have formed in the soil. Ratios of immobile elements (Ce, Cr, Nb, Ta, Ti, Y, and Zr) in soil and bedrock samples are, however, notably different. Furthermore, the moderately mobile trace elements Cu, Mo, and Sr are actually more abundant in soil than in bedrock, and soil concentrations of Zr are up to an order-of-magnitude greater than in bedrock samples. Together these data argue for at least a modest eolian influx, which may have arrived during the regression of Lake Vermont during the latest Pleistocene or from an outwash source in the immediate post-glacial period. Similarly, increased Ca and Na concentrations in soil samples may signify modern deposition of dust bearing Ca (from agricultural fields) and Na (from roads).  相似文献   
960.
Acetylene up to 500 μl l–1 did not affect methane formation in anoxic soil up to 12 h, but further incubation for 1 week showed strong inhibition of methanogenesis. To ascertain the extent of the oxidation of methane produced from rice-planted pots, the effect of acetylene on methane emission was studied. Two rice varieties (Toyohatamochi and Yamahikari) were grown in a greenhouse in submerged soil in pots. At about maximum tillering, heading, and grain-forming stages, methane fluxes were measured. Flux measurement was performed for 3 h from 6 pm, then acetylene at 100 μl l–1 was added to some of the pots. At 6 a.m. the following day, methane fluxes were again measured for 3 h. Only at maximum tillering stage of the variety Toyohatamochi was a significant increase (1.4 times) in methane flux caused by acetylene observed, whereas in the other treatments no significant increase in methane fluxes by acetylene could be defected. To ascertain the activity of methane monooxygenase (MMO), propylene oxide (PPO) formation from propylene was measured with excised roots and a basal portion of stems of the rice plants grown on the submerged soil. A level of 0.1–0.2 μmol PPO h–1 plant–1 was recorded. The roots showed the highest PPO formation per gram dry matter, followed by basal stems. Methane oxidation was roughly proportional to PPO formation. Soluble MMO-positive methanotroph populations were measured by plate counts. The number of colony-forming units per gram dry matter was 106–105 in roots, and 104–103 in basal stems. These results indicate the possibility of methane oxidation in association with wetland rice plants. Received: 26 October 1995  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号