首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2198篇
  免费   61篇
  国内免费   212篇
林业   30篇
农学   295篇
基础科学   209篇
  792篇
综合类   748篇
农作物   239篇
水产渔业   8篇
畜牧兽医   64篇
园艺   48篇
植物保护   38篇
  2024年   7篇
  2023年   22篇
  2022年   26篇
  2021年   28篇
  2020年   34篇
  2019年   36篇
  2018年   54篇
  2017年   88篇
  2016年   125篇
  2015年   78篇
  2014年   88篇
  2013年   158篇
  2012年   146篇
  2011年   196篇
  2010年   156篇
  2009年   169篇
  2008年   143篇
  2007年   168篇
  2006年   114篇
  2005年   110篇
  2004年   70篇
  2003年   73篇
  2002年   39篇
  2001年   48篇
  2000年   40篇
  1999年   35篇
  1998年   41篇
  1997年   31篇
  1996年   33篇
  1995年   20篇
  1994年   23篇
  1993年   16篇
  1992年   6篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   13篇
  1987年   8篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有2471条查询结果,搜索用时 15 毫秒
41.
通过温室盆栽生菜试验,研究厌氧发酵残留物对土壤蔗糖酶、脲酶、多酚氧化酶和中性磷酸酶动态特性以及作物产量的影响.试验以菜园土作为栽培基质,并以是否施用厌氧发酵残留物和种植作物进行设计,生菜种植期为50天,试验中间隔10天测定一次土壤酶活性.结果表明,施用厌氧发酵残留物能明显提高土壤酶的活性,且施用量越多,酶活性越高,生菜的产量也越高.栽种生菜的土壤酶活性高于相应的对照组,酶活性的变化基本和生菜的生长过程一致,在30~40天之间达到最高酶活性.土壤酶活性的提高表明,施用厌氧发酵残留物能改善土壤结构和性能,提高土壤的肥力和生产能力.  相似文献   
42.
农田深层土壤水利用现状与研究趋势   总被引:2,自引:0,他引:2  
近年来,由于水资源短缺,节水农业是华北平原的研究热点。笔者就农田深层土壤水的意义和国内外研究现状进行了综述,并提出了农田深层土壤水的研究趋势。在华北平原,应进行亏缺灌溉条件下周年农田深层土壤水利用效率的研究。  相似文献   
43.
以常用有机肥料牛厩肥、猪厩肥、鸡粪及作物秸秆、油菜绿肥为材料,研究了这些有机物的全钾、速效钾和缓效钾的含量状况,以及它们对土壤钾及作物吸钾的供应能力。结果表明:(1)三种有机烘肥及作物秸秆、绿肥中含钾量为0.85%~4.50%,其中有32.7%~69.7%为速效态钾,1.7%~25.0%为缓效态钾;(2)肥料与土壤共同培养150d后,约有50%~80%的速效态钾和缓效态钾仍以两种形态存在于土壤之中  相似文献   
44.
Field and pot experiments were conducted to evaluate the effect of co-cultivation and crop rotation on the growth and corm rot disease of gladiolus (Gladiolus grandiflorus sect. Blandus) cv. Aarti caused by Fusarium oxysporum f.sp. gladioli (Massey) Snyd. and Hans. In the field experiment, gladiolus was co-cultivated with 10 agricultural/horticultural crops viz. Allium cepa L., Brassica campestris L., Capsicum annuum L., Eruca sativa Mill., Helianthus annuus L., Tagetes erectus L., Zea mays L., Vinca rosea L. and Rosa indica L., in a soil infested with F. oxysporum. All the crops except V. rosea and R. indica reduced disease incidence. The effect of H. annuus and T. erectus was significant and more pronounced than other co-cultivated crops. In general, root and shoot dry biomass, corm fresh weight, number of cormlets and number of flowers per spike decreased as compared to the un-inoculated monoculture gladiolus treatment (negative control) but these parameters enhanced as compared to the F. oxysporum inoculated monoculture gladiolus treatment (positive control). In a pot experiment, all the crops of the field experiment except V. rosea and R. indica were sown in rotation with gladiolus. Pot grown plants of different species were harvested at maturity and the soil was inoculated with F. oxysporum. Gladiolus was cultivated 1 week after inoculation. Disease incidence was significantly suppressed in all the treatments ranging from 29% to 53%. The highest suppression of disease incidence was recorded in T. erectus (53%) followed by B. campestris (49%). The effect of preceding crops on various vegetative parameters was similar in the pot experiment to that of the field experiment. The present study suggests that corm rot disease of gladiolus can be managed by mixed cropping of H. annuus and T. erectus or cultivation of T. erectus and B. campestris in rotation.  相似文献   
45.
Water scarcity is a major factor limiting food production. Improving Livestock Water Productivity (LWP) is one of the approaches to address those problems. LWP is defined as the ratio of livestock’s beneficial outputs and services to water depleted in their production. Increasing LWP can help achieve more production per unit of water depleted. In this study we assess the spatial variability of LWP in three farming systems (rice-based, millet-based and barley-based) of the Gumera watershed in the highlands of the Blue Nile basin, Ethiopia. We collected data on land use, livestock management and climatic variables using focused group discussions, field observation and secondary data. We estimated the water depleted by evapotranspiration (ET) and beneficial animal products and services and then calculated LWP. Our results suggest that LWP is comparable with crop water productivity at watershed scales. Variability of LWP across farming systems of the Gumera watershed was apparent and this can be explained by farmers’ livelihood strategies and prevailing biophysical conditions. In view of the results there are opportunities to improve LWP: improved feed sourcing, enhancing livestock productivity and multiple livestock use strategies can help make animal production more water productive. Attempts to improve agricultural water productivity, at system scale, must recognize differences among systems and optimize resources use by system components.  相似文献   
46.
The poorly integrated cane supply planning between mills and cane growers in the Northeast of Thailand generates an excess of cane supplies that exceeds the mills’ capacity during the peak of harvest season. Each grower individually determines his/her cultivation plan by selecting planting dates and cultivars based on one’s own preference without taking into account the individual mill’s capacity and other growers’ plans. This situation causes most sugarcane grown in this area to reach its mature stage at the same period. In this study, we propose a framework of cultivation planning to cope with the problem. The focus of the cultivation plan is a long-term plan to determine the cultivation time, the cultivar selection and the corresponding prospective harvesting time window for each field such that overall sugar production is optimized.The crop growth model and a mathematical model are employed for yield simulation and optimization task. The crop growth model enables decision-makers to visualize cane production of each individual field at different dates with different cultivars and allow decision-makers to apply the mathematical programming to cultivation planning. The suggested framework has the potential to increase sugar production by 23% when compared to the traditional method.  相似文献   
47.
This paper reports the effects of irrigation amount and partial rootzone drying (PRD) on water relations, growth, yield and wine quality of Vitis vinifera cv. ‘Tempranillo’ during two consecutive years in a commercial vineyard with a deep, light-clay soil located in Requena, Valencia, Spain. Partial rootzone drying applied at two amounts (100% and 50% of the estimated crop evapotranspiration), was compared to conventional drip irrigation, and also to rainfed vines. Results showed that the effects of irrigation amount on yield and wine quality were different between years. In 2003 with low yield values (around 6.3 t ha−1) irrigation did neither affect grape production nor wine quality. However, in the following year, with much higher general yield (17 t ha−1), the high irrigation dose increased yield by 30% compared to rainfed vines and it also increased must total soluble solids and wine alcohol content. In both seasons, PRD did not significantly affect physiological parameters, nor growth, yield or fruit and wine quality, when compared to the same amount of water applied by conventional drip irrigation. Overall these results suggest that, under our experimental conditions, it was the irrigation amount rather than the system of application what affected vine performance, indicating the difficulties of successfully employing the PRD type of irrigation with a drip system in heavy and deep soils.  相似文献   
48.
Individual effect of different field scale management interventions for water saving in rice viz. changing date of transplanting, cultivar and irrigation schedule on yield, water saving and water productivity is well documented in the literature. However, little is known about their integrated effect. To study that, field experimentation and modeling approach was used. Field experiments were conducted for 2 years (2006 and 2007) at Punjab Agricultural University Farm, Ludhiana on a deep alluvial loamy sand Typic Ustipsamment soils developed under hyper-thermic regime. Treatments included three dates of transplanting (25 May, 10 June and 25 June), two cultivars (PR 118 inbred and RH 257 hybrid) and two irrigation schedules (2-days drainage period and at soil water suction of 16 kPa). The model used was CropSyst, which has already been calibrated for growth (periodic biomass and LAI) of rice and soil water content in two independent experiments. The main findings of the field and simulation studies conducted are compared to any individual, integrated management of transplanting date, cultivar and irrigation, sustained yield (6.3-7.5 t ha−1) and saved substantial amount of water in rice. For example, with two management interventions, i.e. shifting of transplanting date to lower evaporative demand (from 5 May to 25 June) concomitant with growing of short duration hybrid variety (90 days from transplanting to harvest), the total real water saving (wet saving) through reduction in evapotranspiration (ET) was 140 mm, which was almost double than managing the single, i.e. 66 mm by shifting transplanting or 71 mm by growing short duration hybrid variety. Shifting the transplanting date saved water through reduction in soil water evaporation component while growing of short duration variety through reduction in both evaporation and transpiration components of water balance. Managing irrigation water schedule based on soil water suction of 16 kPa at 15-20 cm soil depth, compared to 2-day drainage, did not save water in real (wet saving), however, it resulted into apparent water saving (dry saving). The real crop water productivity (marketable yield/ET) was more by 17% in 25th June transplanted rice than 25th May, 23% in short duration variety than long and 2% in irrigation treatment of 16 kPa soil water suction than 2-days drainage. The corresponding values for the apparent crop water productivity (marketable yield/irrigation water applied) were 16, 20 and 50%, respectively. Pooled experimental data of 2 years showed that with managing irrigation scheduling based on soil water suction of 16 kPa at 15-20 cm soil depth, though 700 mm irrigation water was saved but the associated yield was reduced by 277 kg ha−1.  相似文献   
49.
Water use of spring wheat to raise water productivity   总被引:1,自引:0,他引:1  
In semi-arid environments with a shortage of water resources and a risk of overexplotation of water supplies, spring wheat (Triticum aestivum L.) is a crop that can reduce water use and increase water productivity, because it takes advantage of spring rainfall and is harvested before the evaporative demands of summer. We carried out an experiment in 2003 at “Las Tiesas” farm, located between Barrax and Albacete (Central Spain), to improve accuracy in the estimation of wheat evapotranspiration (ETc) by using a weighing lysimeter. The measured seasonal ETc averages (5.63 mm day−1) measured in the lysimeter was 417 mm compared to the calculated ETc values (5.31 mm day−1) calculated with the standard FAO methodology of 393 mm. The evapotranspiration crop coefficient (Kc) derived from lysimetric measurements was Kc-mid: 1.20 and Kc-end: 0.15. The daily lysimeter Kc values were fit to the evolution linearly related to the green cover fraction (fc), which follows the crop development pattern. Seasonal soil evaporation was estimated as 135 mm and the basal crop coefficient approach was calculated in this study, Kcb which separates crop transpiration from soil evaporation (evaporation coefficient, Ke) was calculated and related to the green cover fraction (fc) and the Normalized Difference Vegetation Index (NDVI) obtained by field radiometry in case of wheat. The results obtained by this research will permit the reduction of water use and improvement of water productivity for wheat, which is of vital importance in areas of limited water resources.  相似文献   
50.
Although rainfall in the United States Mid-South is sufficient to produce corn (Zea mays L.) without irrigation in most years, timely irrigation has been shown to increase yields. The recent interest in ethanol fuels is expected to lead to increases in US corn production, and subsurface drip irrigation (SDI) is one possible way to increase application efficiency and thereby reduce water use. The objective of this study was to determine the response of SDI-irrigated corn produced in the US Mid-South. Field studies were conducted at the University of Arkansas Northeast Research and Extension Center at Keiser during the 2002-2004 growing seasons. The soil was mixed, with areas of fine sandy loam, loamy sand, and silty clay. SDI tubing was placed under every row at a depth of approximately 30 cm. Three irrigation levels were compared, with irrigation replacing 100% and 60% of estimated daily water use and no irrigations. The split plot treatment was hybrid, with three hybrids of different relative maturities. Although the 3-year means indicated significantly lower yields for a nonirrigated treatment, no significant differences were observed among the treatments in 2003 or 2004. A large difference was observed in 2002, the year with the least rainfall during the study period, but no difference was detected between the two irrigated treatments in any year. The treatment with the lower water application had the higher irrigation water use efficiency. Although the results of this study suggested that replacing 60% of the estimated daily evapotranspiration with SDI is sufficient for maximum corn yields, additional observations will be needed to determine whether corn production with SDI is feasible in the region and to develop recommendations for farmers choosing to adopt the method. Improved weather forecasting and crop coefficient functions developed specifically for the region should also contribute to more efficient irrigation management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号