首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2621篇
  免费   115篇
  国内免费   148篇
林业   516篇
农学   93篇
基础科学   48篇
  1193篇
综合类   621篇
农作物   112篇
水产渔业   55篇
畜牧兽医   107篇
园艺   110篇
植物保护   29篇
  2024年   28篇
  2023年   63篇
  2022年   91篇
  2021年   65篇
  2020年   57篇
  2019年   69篇
  2018年   57篇
  2017年   104篇
  2016年   122篇
  2015年   130篇
  2014年   122篇
  2013年   181篇
  2012年   177篇
  2011年   300篇
  2010年   188篇
  2009年   215篇
  2008年   164篇
  2007年   173篇
  2006年   121篇
  2005年   98篇
  2004年   87篇
  2003年   64篇
  2002年   25篇
  2001年   23篇
  2000年   27篇
  1999年   16篇
  1998年   21篇
  1997年   20篇
  1996年   21篇
  1995年   10篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   11篇
  1990年   6篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2884条查询结果,搜索用时 15 毫秒
21.
碳税收入使用政策是西方国家碳税制度设计的一项重要内容,其主要基于税收中性原则,将税收收入或投资于环保节能项目,或以税式支出方式降低纳税人负担,确保碳税收入的循环,实现节能减排的目标。在我国碳税制度设计的构想中,应借鉴西方国家税制经验,结合本国现实情况,科学合理地设计碳税收入使用政策,确保碳税调节功能的充分发挥,将碳税发展成培育战略性新兴产业的重要政策工具之一。  相似文献   
22.
Land use practices alter the biomass and structure of soil microbial communities. However, the impact of land management intensity on soil microbial diversity (i.e. richness and evenness) and consequences for functioning is still poorly understood. Here, we addressed this question by coupling molecular characterization of microbial diversity with measurements of carbon (C) mineralization in soils obtained from three locations across Europe, each representing a gradient of land management intensity under different soil and environmental conditions. Bacterial and fungal diversity were characterized by high throughput sequencing of ribosomal genes. Carbon cycling activities (i.e., mineralization of autochthonous soil organic matter, mineralization of allochthonous plant residues) were measured by quantifying 12C- and 13C-CO2 release after soils had been amended, or not, with 13C-labelled wheat residues. Variation partitioning analysis was used to rank biological and physicochemical soil parameters according to their relative contribution to these activities. Across all three locations, microbial diversity was greatest at intermediate levels of land use intensity, indicating that optimal management of soil microbial diversity might not be achieved under the least intensive agriculture. Microbial richness was the best predictor of the C-cycling activities, with bacterial and fungal richness explaining 32.2 and 17% of the intensity of autochthonous soil organic matter mineralization; and fungal richness explaining 77% of the intensity of wheat residues mineralization. Altogether, our results provide evidence that there is scope for improvement in soil management to enhance microbial biodiversity and optimize C transformations mediated by microbial communities in soil.  相似文献   
23.
Perennial rhizomatous grasses (PRGs) tend to have a high yield combined with a low environmental impact. Cultivation in marginal or poorly cultivated land is recommended in order not to compromise food security and to overcome land use controversies. However, the environmental impacts of using different types of soil are still unclear. We thus assessed the environmental impact of two giant reed (GR) systems cultivated in a fertile soil (FS) and in a marginal soil (MS) through a cradle-to-plant gate LCA. We analyzed energy balance, GHG emissions (including LUC, not including iLUC), and the main impacts on air, water and soil quality. In both systems the annualized soil carbon sequestration was more than twofold the total GHG emitted, equal to −6464 kg CO2eq ha−1 in FS and −5757 kg CO2eq ha−1 in MS. Overall, soil characteristics affected not only GR yield level, but also its environmental impact, which seems to be higher in the MS system both on a hectare and tonne basis. The production of GR biomass in marginal soil could thus lead to higher environmental impacts and a more extensive land requirement.  相似文献   
24.
This study aimed to evaluate the effect of different dose levels of aguamiel (Agave atrovirens) on in vitro cecal gas, methane (CH4), and carbon dioxide (CO2) productions of five forage species (Avena sativa [hay]), Moringa oleifera, Caesalpinia coriacea, Salix babylonica, and Eichhornia crassipes using inocula from the horse. The forage samples were incubated with three doses of aguamiel: 0, 34, and 68 μg of aguamiel/g dry matter (DM) of substrate. Cecal inocula were collected from four adult female Criolla horses (3–4 years of age and weighing 300 ± 15.0 kg) grazed on native grasses for about 8 hours without supplementation. Forage type affected (P < .001) cecal asymptotic, rate and lag time of gas, CH4 and CO2 productions (mL/g DM), pH and DM degradability. Aguamiel dose had linear and quadratic effects (P < .05) on the asymptotic and rate of CH4 productions and rate and lag time of CO2 productions (mL/g DM). Forage type × aguamiel dose interactions were significant (P < .05) for asymptotic, rate and lag time of gas, and CH4 and CO2 productions (mL/g DM). Forage species effects were pronounced (P < .05) on CH4 and CO2 productions (mL/g incubated and degraded DM) and proportional CH4 production at all hours of incubation, except for CO2 production (mL/g incubated DM). Aguamiel dose affected (P < .05) CO2 production (mL/g incubated DM) and proportional CO2 production at the incubated hours. Forage type × aguamiel dose interactions were observed (P < .05) for CO2 production (mL/g incubated DM) and proportional CO2 production at the incubated hours but had no impact on CH4 production. It is concluded that addition of aguamiel to five forage species affected fermentation kinetics of gas production resulting in different in vitro cecal gas, CH4 and CO2 productions from these substrates.  相似文献   
25.
根据湖南省“十一五”以来(2006~2013年)的工业发展和碳排放情况,分析湖南工业发展与碳排放之间的脱钩弹性、节能弹性、减排弹性,结果表明:湖南工业行业发展的过程中,较好地控制了碳排放量,但节能减排任务依然较大。因此,新常态下应以“节能、减排”为主线,深入优化产业结构,调整能源消费结构,从而确保工业可持续发展的同时,实现碳排放的合理控制。  相似文献   
26.
Prescribed burning is a common land management technique in many areas of the UK uplands. However, concern has been expressed at the impact of this management practice on carbon stocks and fluxes found in the carbon‐rich peat soils that underlie many of these areas. This study measured both carbon stocks and carbon fluxes from a chronosequence of prescribed burn sites in northern England. A range of carbon parameters were measured including above ground biomass and carbon stocks; net ecosystem exchange (NEE), net ecosystem respiration (Reco) and photosynthesis (Pg) from closed chamber methods; and particulate organic carbon (POC). Analysis of the CO2 data showed that burning was a significant factor in measured CO2 readings but that other factors such as month of sampling explained a greater proportion of the variation in the data. Carbon budget results showed that whereas all the plots were net sources of carbon, the most recent burn scars were smaller sources of carbon compared with the older burn scars, suggesting that burning of Calluna‐dominated landscapes leads to an ‘avoided loss’ of carbon. However, this management intervention did not lead to a transition to a carbon sink and that for carbon purposes, active peat‐forming conditions are desirable.  相似文献   
27.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   
28.
Rather than a human-centric, the basic strategy of achieving Sustainable Development Goals must be focused on restoring and sustaining planetary processes. The urgency of meeting the demands of the humanity must be reconciled with the necessity of enhancing the environment. Increasing and restoring soil organic matter content of the degraded and depleted soils is critical to strengthening planetary processes.  相似文献   
29.
The effect of phosphorus (P) and carbon (C) on methanogenesis was investigated in a low-P (130 mg P kg−1 soil) wetland within Everglades National Park. Soil was amended with C substrates (acetate, formate, butyrate, and glucose) with or without P, and CO2 and CH4 production was monitored. Production of CH4 increased with P addition although no effect on CO2 was observed. Methane production was stimulated by all C substrates except for butyrate. No effect of C on CO2 production was observed except for stimulation following glucose addition. Production of CH4 following formate addition was not affected by P, suggesting hydrogenotrophic methanogens may be substrate, not P, limited. Addition of P to all other C substrates heightened CH4 production and lowered the CO2–C:CH4–C ratio relative to the corresponding C only treatment, suggesting that P may have limited acetoclastic methanogens and fermentation.  相似文献   
30.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号