首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   76篇
  国内免费   112篇
林业   371篇
农学   70篇
基础科学   40篇
  894篇
综合类   463篇
农作物   95篇
水产渔业   51篇
畜牧兽医   87篇
园艺   107篇
植物保护   11篇
  2024年   16篇
  2023年   31篇
  2022年   51篇
  2021年   33篇
  2020年   30篇
  2019年   45篇
  2018年   39篇
  2017年   69篇
  2016年   76篇
  2015年   101篇
  2014年   82篇
  2013年   112篇
  2012年   127篇
  2011年   245篇
  2010年   158篇
  2009年   180篇
  2008年   139篇
  2007年   151篇
  2006年   99篇
  2005年   80篇
  2004年   75篇
  2003年   57篇
  2002年   23篇
  2001年   19篇
  2000年   24篇
  1999年   16篇
  1998年   19篇
  1997年   20篇
  1996年   19篇
  1995年   10篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   10篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有2189条查询结果,搜索用时 31 毫秒
171.
We assessed the successional development of above- and belowground ecosystem biomass and carbon (C) pools in an age-sequence of four White pine (Pinus strobus L.) plantation stands (2-, 15-, 30-, and 65-years-old) in Southern Ontario, Canada. Biomass and C stocks of above- and belowground live and dead tree biomass, understorey and forest ground vegetation, forest floor C (LFH-layer), and woody debris were determined from plot-level inventories and destructive tree sampling. Small root biomass (<5 mm) and mineral soil C stocks were estimated from soil cores. Aboveground tree biomass became the major ecosystem C pool with increasing age, reaching 0.5, 66, 92, and 176 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Tree root biomass increased from 0.1 to 10, 18, 38 t ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, contributing considerably to the total ecosystem C in the three older stands. Forest floor C was 0.8, 7.5, 5.4, and 12.1 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, indicating an increase during the first two decades, but no further age-effect during the later growth phase. Mineral soil C was age-independent with 37.2, 33.9, 39.1, and 36.7 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively. Aboveground ecosystem C increased with age from 3 to 40, 52, and 100 t C ha−1 in the 2-, 15-, 30-, and 65-year-old stands, respectively, due to an increase in aboveground tree biomass. Belowground ecosystem C remained similiar in the early decades after establishment with 37, 39, and 39 t C ha−1 in the 2-, 15-, and 30-year-old stands, but increased to 56 t C ha−1 in the 65-year-old stand due to an increase in root biomass. The difference in total ecosystem C between the 2- and 65-year-old stand was 116 t C ha−1. Our results highlight the importance of considering the successional development of forest ecosystem C pools, when estimating C sink potentials over their complete life cycle.  相似文献   
172.
Soil food webs are mainly based on three primary carbon (C) sources: root exudates, litter, and recalcitrant soil organic matter (SOM). These C sources vary in their availability and accessibility to soil organisms, which could lead to different pathways in soil food webs. The presence of three C isotopes (12C, 13C and 14C) offers an unique opportunity to investigate all three C sources simultaneously. In a microcosm experiment we studied the effect of food web complexity on the utilization of the three carbon sources. We choose an incomplete three factorial design with (i) living plants, (ii) litter and (iii) food web complexity. The most complex food web consisted of autochthonous microorganisms, nematodes, collembola, predatory mites, endogeic and anecic earthworms. We traced C from all three sources in soil, in CO2 efflux and in individual organism groups by using maize grown on soil developed under C3 vegetation and application of 14C labelled ryegrass shoots as a litter layer. The presence of living plants had a much greater effect on C pathways than food web complexity. Litter decomposition, measured as 14CO2 efflux, was decreased in the presence of living plants from 71% to 33%. However, living plants increased the incorporation of litter C into microbial biomass and arrested carbon in the litter layer and in the upper soil layer. The only significant effect of food web complexity was on the litter C distribution in the soil layers. In treatments with fungivorous microarthropods (Collembola) the incorporation of litter carbon into mineral soil was reduced. Root exudates as C source were passed through rhizosphere microorganisms to the predator level (at least to the third trophic level). We conclude that living plants strongly affected C flows, directly by being a source of additional C, and indirectly by modifying the existing C flows within the food web including CO2 efflux from the soil and litter decomposition.  相似文献   
173.
Cover crops may influence soil carbon (C) sequestration and microbial biomass and activities by providing additional residue C to soil. We examined the influence of legume [crimson clover (Trifolium incarnatum L.)], nonlegume [rye (Secale cereale L.)], blend [a mixture of legumes containing balansa clover (Trifolium michelianum Savi), hairy vetch (Vicia villosa Roth), and crimson clover], and rye + blend mixture cover crops on soil C fractions at the 0–150 mm depth from 2001 to 2003. Active fractions of soil C included potential C mineralization (PCM) and microbial biomass C (MBC) and slow fraction as soil organic C (SOC). Experiments were conducted in Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults) under dryland cotton (Gossypium hirsutum L.) in central Georgia and in Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) under irrigated cotton in southern Georgia, USA. Both dryland and irrigated cotton were planted in strip tillage system where planting rows were tilled, thereby leaving the areas between rows untilled. Total aboveground cover crop and cotton C in dryland and irrigated conditions were 0.72–2.90 Mg C ha−1 greater in rye + blend than in other cover crops in 2001 but was 1.15–2.24 Mg C ha−1 greater in rye than in blend and rye + blend in 2002. In dryland cotton, PCM at 50–150 mm was greater in June 2001 and 2002 than in January 2003 but MBC at 0–150 mm was greater in January 2003 than in June 2001. In irrigated cotton, SOC at 0–150 mm was greater with rye + blend than with crimson clover and at 0–50 mm was greater in March than in December 2002. The PCM at 0–50 and 0–150 mm was greater with blend and crimson clover than with rye in April 2001 and was greater with crimson clover than with rye and rye + blend in March 2002. The MBC at 0–50 mm was greater with rye than with blend and crimson clover in April 2001 and was greater with rye, blend, and rye + blend than with crimson clover in March 2002. As a result, PCM decreased by 21–24 g CO2–C ha−1 d−1 but MBC increased by 90–224 g CO2–C ha−1 d−1 from June 2001 to January 2003 in dryland cotton. In irrigated cotton, SOC decreased by 0.1–1.1 kg C ha−1 d−1, and PCM decreased by 10 g CO2–C ha−1 d−1 with rye to 79 g CO2–C ha−1 d−1 with blend, but MBC increased by 13 g CO2–C ha−1 d−1 with blend to 120 g CO2–C ha−1 d−1 with crimson clover from April 2001 to December 2002. Soil active C fractions varied between seasons due to differences in temperature, water content, and substrate availability in dryland cotton, regardless of cover crops. In irrigated cotton, increase in crop C input with legume + nonlegume treatment increased soil C storage and microbial biomass but lower C/N ratio of legume cover crops increased C mineralization and microbial activities in the spring.  相似文献   
174.
Thiosulfate and CS2 inhibit nitrification. The effect of the addition of thiosulfate on the turnover of inorganic N compounds was tested in an Egyptian and a German arable soil under nitrifying and denitrifying conditions. For nitrification, the soils were amended with NH inf4 sup+ and incubated under aerobic conditions. For denitrification, the soils were amended with NO inf3 sup- and incubated under anaerobic conditions. In both cases, the thiosulfate decreased with time while tetrathionate accumulated to an intermediate extent. Both compounds disappeared completely after <25 days. Production of CS2 was not observed. Carbonyl sulfide was produced only in the Egyptian soil, but production decreased with increasing amounts of added thiosulfate. Under nitrifying conditions, the addition of increasing amounts of thiosulfate (25, 50, and 100 g S g-1 dry weight) resulted in decreasing rates of NH inf4 sup+ oxidation to NO inf3 sup- ; it also resulted in an increasing intermediate accumulation of NO inf2 sup- and NO, and in an increasing production of N2O. Under denitrifying conditions, the addition of increasing amounts of thiosulfate did not significantly affect the rate of NO inf3 sup- reduction, and resulted in an increasing intermediate accumulation of NO inf2 sup- and of NO only in the German soil in which the production of N2O was slightly inhibited by thiosulfate. These results demonstrate that the nitrification of NH inf4 sup+ and NO inf2 sup- was inhibited by increasing concentrations of thiosulfate and/or tetrathionate without involving the formation of volatile S compounds as potential nitrification inhibitors. Denitrification was not affected by the addition of thiosulfate.  相似文献   
175.
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces (“onion” layering model).To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm−3 and analyzed the six fractions for measures of organic matter and mineral phase properties.All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and 14C mean residence time (MRT) increased with particle density from ca. 150 years to >980 years in the four organo-mineral fractions. In contrast, C/N, 13C and 15N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an “onion” layering model.X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an “onion” layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or “onion” layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.  相似文献   
176.
177.
In an earlier study we reported the apparent stabilization of a low fungal biomass in ex-arable lands during the first decades after abandonment. It was hypothesized that the lack of increase in fungal biomass was due to constraints on development of fungi with persistent hyphae such as lignocellulolytic basidiomycetes and ericoid mycorrhizal fungi. With respect to the former group, the slow increase of the pool of lignocellulose-rich organic matter was expected to be the major constraint for their development. To study this, we enriched soil samples of one arable land, of two recently abandoned arable lands, of one older abandoned arable land and of heathland with carbon substrates that differed in composition (glucose, cellulose and sawdust). In addition, we combined the effect of carbon addition on fungal biomass development in arable and recently abandoned lands with inoculation of 1% of soil from the older abandoned site and the heathland. All treatments induced a fast increase and a subsequent rapid decline in fungal biomass in the arable and ex-arable fields. Denaturing Gradient Gel Electrophoresis (DGGE) band patterns and enzyme activities did show differences between the carbon treatments but not between the recent and older abandoned field sites, indicating a similarly responding fungal community even after three decades of land abandonment and irrespective of soil inoculation. Identification of fungi by sequencing and culturing confirmed that decomposition processes were mostly dominated by opportunistic fungi in arable and ex-arable fields. In the heathland, only a very slow increase of microbial activity was observed after addition of carbon and sequencing of DGGE bands showed that ericoid mycorrhiza (ERM) fungi were responsible for carbon decomposition. We conclude that an increase of enduringly present fungal hyphae in ex-arable land may only be possible when a separate litter layer develops and/or when suitable host plants for ERM fungi become established.  相似文献   
178.
为规范科研实验条件,更好地为现代畜牧业产业化服务,检验了农业部动物营养学重点开放实验室程控式人工气候舱(简称环控舱)的通风系统的功能,对装载动物的环控舱在正常运转5d以上的气体成分进行分析。测定结果表明舱内的氨气和二氧化碳浓度分别为11.3~19.7mL/m3和890~1400mL/m3,均低于家畜卫生标准,但鸡试验舱在上午开舱门清粪前的氨气浓度和猪试验舱的二氧化碳浓度较高,接近了卫生标准的上限值。  相似文献   
179.
Simultaneously assessing shifts in microbial community composition along landscape and depth gradients allows us to decouple correlations among environmental variables, thus revealing underlying controls on microbial community composition. We examined how soil microbial community composition changed with depth and along a successional gradient of native prairie restoration. We predicted that carbon would be the primary control on both microbial biomass and community composition, and that deeper, low-carbon soils would be more similar to low-carbon agricultural soils than to high carbon remnant prairie soils. Soil microbial community composition was characterized using phospholipid fatty acid (PLFA) analysis, and explicitly linked to environmental data using structural equations modeling (SEM). We found that total microbial biomass declined strongly with depth, and increased with restoration age, and that changes in microbial biomass were largely attributable to changes in soil C and/or N concentrations, together with both direct and indirect impacts of root biomass and magnesium. Community composition also shifted with depth and age: the relative abundance of sulfate-reducing bacteria increased with both depth and restoration age, while gram-negative bacteria declined with depth and age. In contrast to prediction, deeper, low-C soils were more similar to high-C remnant prairie soils than to low-C agricultural soils, suggesting that carbon is not the primary control on soil microbial community composition. Instead, the effects of depth and restoration age on microbial community composition were mediated via changes in available phosphorus, exchangeable calcium, and soil water, together with a large undetermined effect of depth. Only by examining soil microbial community composition shifts across sites and down the soil column simultaneously were we able to tease apart the impact of these correlates environmental variables.  相似文献   
180.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号