首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   1篇
  国内免费   2篇
林业   1篇
农学   12篇
  98篇
综合类   13篇
农作物   7篇
植物保护   2篇
  2020年   3篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   35篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   10篇
  1996年   6篇
  1995年   1篇
  1993年   6篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   10篇
  1988年   3篇
  1987年   3篇
排序方式: 共有133条查询结果,搜索用时 12 毫秒
111.
Abstract

This study analyzed the phenotypic and genotypic characters of nodulating rhizobia isolated from two soybean cultivars, Kyushu 151 and Sachiyutaka, in the same field of the Yamaguchi Prefectural Technology Center of Agriculture and Forestry in Japan. The isolates were classified into groups using phenotypic characteristics, such as growth rate, color change on Bromothymol blue-containing yeast extract-mannitol agar (YMA) plates and colony morphology on YMA plates, and by genotypic characteristics, such as polymerase chain reaction–restriction fragment length polymorphism patterns of the 16S ribosomal RNA genes (16S rDNA) and the internal transcribed sequence (ITS) regions. In Kyushu 151, single phenotypic and genotypic groups were isolated from every nodule examined. In Sachiyutaka, plural strains belonging to distinct groups were obtained frequently from single nodules, indicating that multiple occupancy was established at high frequency. No fixed combination of the groups was found in the composition of multiple occupancy. An increase in the relative abundance of isolates belonging to Sinorhizobium fredii (Ensifer fredii) occurred concomitantly with the increase in the proportion of nodules with multiple occupancy. Nearly 60% of the isolates from Sachiyutaka belonged to S. fredii; 75% of them were obtained from nodules with multiple occupancy.  相似文献   
112.
In acid soil, low pH, reduced availability of nutrients, and toxicity of Al and Mn limit plant growth and the survival and effectiveness of rhizobia. The symbiosis between legumes and rhizobia is particularly sensitive to acid soil stress. A pot experiment evaluated whether Bradyrhizobium japonicum strain growth on acidic agar media would predict ability to colonize the rhizosphere and form effective nodules in acidic soils. Three Indonesian strains of B. japonicum with similar effectiveness at neutral pH in sand culture but with different tolerance of acid soil stress factors in agar media, and an acid-tolerant commercial strain (CB1809) of comparable effectiveness, were tested in three acid soils using the Al tolerant soybean (Glycine max cv PI 416937). At 7 days after inoculation all strains had achieved large rhizosphere populations, but by day 14 the rhizosphere population of the acid-sensitive strain had decreased, while the more acid-tolerant strains increased. The acid-tolerant strains had significantly greater nodulation and symbiotic effectiveness than plants inoculated with the acid-sensitive strain. Laboratory prescreening of B. japonicum for acid, Al and Mn tolerance in acid media successfully identified strains which were symbiotically competent in low pH soils.  相似文献   
113.
Attempts to improve the symbiotic nitrogen fixation with effective (Brady) rhizobium strains do not always succeed under field conditions due to the lower nodulation competitiveness of the introduced strains than that of the indigenous rhizobia (Triplett and Sadowsky 1992). An introduced strain needs to be marked for monitoring its nodule occupancy under competitive nodulation conditions.  相似文献   
114.
A field and greenhouse experiments were conducted to determine the requirement of Fe nutrient supplied through foliar and soil application in soybean inoculated with different selected isolates of exotic and native Bradyrhizobium spp. in saline soils. Six soybean genotypes and three Bradyrhizobium spp. were used for the greenhouse experiments, whereas only two soybean genotypes, namely TGx-1336424 and GIZA, were selected for further study under field conditions. Two levels of FeSO4 (0 and 4 mg Fe kg?1 soil) directly supplied to the soil and three levels of Fe-ethylenediaminetetraacetic acid (0–2% of Fe) through foliar application were used for greenhouse and field experiments, respectively. The results of the greenhouse experiment indicated a non-significant effect of Fe application on nodulation and shoot biomass in soybean. Fe application did not improve the grain yield and total biomass yield in soybean inoculated with UK isolate and local isolate but showed remarkable improvement with TAL-379. High soil native N might be the cause for insignificant effect of Fe applied at 2% in highly effective inoculated plants. Therefore, it can be concluded that the symbiotic effectiveness of Bradyrhizobium sp. and the native soil N would affect the soybean Fe requirement supplied through foliar application.  相似文献   
115.
116.
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region.  相似文献   
117.
The most common method of inoculating legume crops in Australia is the application of peat slurry inoculant to seed. The recent introduction of granular (solid) formulations of inoculants into the Australian market has provided the potential to apply rhizobia with greater ease, but their efficacy has not been independently evaluated. Here, we compare the efficacy of a range of experimental and commercially-available granular inoculants on chickpea, faba bean, lentil, lupin and pea crops in comparison with un-inoculated treatments, and with conventional seed-applied peat slurry inoculants. Thirty-seven field experiments were established in Victoria, South Australia and southern New South Wales over five years. Peat slurry inoculants provided effective nodulation of all legumes. Granular inoculants varied markedly in their ability to improve grain legume nodulation. The size of response depended inversely on background nodulation from soil rhizobial populations. At sites with median background nodulation, peat granules and attapulgite clay granules placed with seed resulted in nodulation similar to peat-slurry-based inoculation, but treatments with bentonite clay granules did not increase nodule numbers much above those in un-inoculated treatments. The generally lower numbers of rhizobia g−1 in the bentonite granules, translated to lower rhizobia application rate to the soil. However, differences in number of rhizobia g−1 granule did not fully explain the nodulation differences between granules. Granule moisture content and granule particle size differed markedly between granule types but their influence on nodulation was not tested. Grain yields did not differ between attapulgite granules placed with seed, peat granules and peat slurry inoculants (all well-nodulated treatments), but were lower with bentonite granule inoculants. Yield differences within sites were related to nodulation and the differences between treatments attenuated as background nodulation increased. Overall, these studies demonstrate that certain granule types have the potential to be used in Australia with grain legumes, particularly in circumstances when seed-applied inoculants are problematic, such as where seed fungicides or insecticides need to be applied. However, granular inoculant formulations differ substantially in their potential to produce nodules on a range of grain legumes.  相似文献   
118.
 In order to identify soybean cultivars with higher biological N2 fixation capacities, North American and Brazilian soybean [Glycine max (L.) Merrill] cultivars, belonging to maturity groups VI–VIII, were evaluated for nodulation parameters and N2 fixation rates. The symbiotic performance of 152 cultivars was evaluated in pots containing 4 kg soil with an established population of the three Bradyrhizobium elkanii strains [29w (SEMIA 5019):SEMIA 566 : SEMIA 587, 22%:36%:34%] which are established in most Brazilian soils cultivated with soybean. Differences were verified among cultivars, with some accumulating up to twice as much nodule dry weight and N in tissues as others. The variability among cultivars was also confirmed when six of them were used in a field experiment, resulting in differences in nodulation, yield and total N accumulated in grains. The analysis of nodule occupancy in 12 cultivars grown either under sterile conditions and receiving a double inoculum and N-free nutrient solution, or in pots containing soil with an established population of bradyrhizobia, showed the preference of cultivars for specific strains. Received: 7 December 1998  相似文献   
119.
For the increase of the occupation ratio of inoculum strain in the competition with indigenous rhizobia, the relationship between Rj-genotypes of soybean and the preference of Rj-cultivars for various types of rhizobia for nodulation was investigated by using the Rj 2 Rj 4-genotype of soybean isolated from the cross between the Rj 2 Rj 3-cultivar IAC-2 and Rj 4-one Hill (Ishizuka et al. 1993: Soil Sci. Plant Nutr., 39, 79-86). Firstly, these Rj 2 Rj 4-genotypes were found to harbor the Rj 3-gene. The Rj 2Rj3Rj4-genotypes of soybean were considered to exhibit a more narrow microsymbiont range for nodulation than the Rj 2 Rj 3-and Rj4-cultivars. Therefore, rhizobia were isolated from the nodules of various Rj-genotypes of soybeans grown in soils, and the preference of the Rj 2 Rj 3 Rj 4-genotype for indigenous rhizobia was examined. The nodule occupancy of serotype 110 was significantly higher in the bacteroids of the nodules from the Rj 2 Rj 3 Rj 4-rgenotypes than in those from the other genotypes, non Rj-, Rj 2 Rj 3-, and Rj 4-cultivars. These results demonstrated that the Rj 2 Rj 3 Rj 4-genotype prefers more actively serogroup USDA110 to the others of rhizobia. Thus, Rj 2 Rj 3 Rj 4-genotype is superior to non- Rj-, Rj 2 Rj 3-, and Rj 4-genotypes for the formation of efficient nodules for nitrogen fixation.  相似文献   
120.
Durch Saatgutinokulation mit selektierten leistungsfähigen Bradyrhizobium‐Bakterien wurde der Sproßtrockenmasse‐und Samenertrag von Lupinen und Serradella in Feld‐ und Großversuchen auf unterschiedlichen Standorten (lehmigem Sand und sandigem Lehm) ohne zusätzlichen Düngereinsatz in mehreren Jahren wiederholt erhöht. Die Inokulation war bei unterschiedlichen Sorten von gelben, weißen und blauen Lupinen und bei Leguminosengemenge in Frühjahrs‐und Sommeraussaaten wirksam. Sie wirkte sich auch positiv auf die Wurzelentwicklung aus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号