全文获取类型
收费全文 | 22952篇 |
免费 | 2570篇 |
国内免费 | 1967篇 |
专业分类
林业 | 1750篇 |
农学 | 1368篇 |
基础科学 | 4244篇 |
7568篇 | |
综合类 | 7414篇 |
农作物 | 643篇 |
水产渔业 | 1424篇 |
畜牧兽医 | 790篇 |
园艺 | 386篇 |
植物保护 | 1902篇 |
出版年
2025年 | 8篇 |
2024年 | 434篇 |
2023年 | 606篇 |
2022年 | 708篇 |
2021年 | 767篇 |
2020年 | 852篇 |
2019年 | 950篇 |
2018年 | 764篇 |
2017年 | 1072篇 |
2016年 | 1289篇 |
2015年 | 926篇 |
2014年 | 1156篇 |
2013年 | 1379篇 |
2012年 | 1832篇 |
2011年 | 1692篇 |
2010年 | 1386篇 |
2009年 | 1268篇 |
2008年 | 1239篇 |
2007年 | 1388篇 |
2006年 | 1162篇 |
2005年 | 1042篇 |
2004年 | 865篇 |
2003年 | 705篇 |
2002年 | 594篇 |
2001年 | 533篇 |
2000年 | 451篇 |
1999年 | 373篇 |
1998年 | 324篇 |
1997年 | 288篇 |
1996年 | 264篇 |
1995年 | 226篇 |
1994年 | 235篇 |
1993年 | 162篇 |
1992年 | 132篇 |
1991年 | 128篇 |
1990年 | 87篇 |
1989年 | 65篇 |
1988年 | 43篇 |
1987年 | 43篇 |
1986年 | 16篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 8篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1963年 | 1篇 |
1962年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
181.
A challenge to breeding drought‐tolerant barley in the Middle‐East is that precipitation and evaporative demand patterns dictate opposite water use strategies (conservative vs. risk‐taking). To characterize these strategies, we examined high‐resolution, whole‐plant transpiration rate (TR) responses to increasing vapour pressure deficit (VPD) and nocturnal TR (TRN) dynamics among 25 local barley genotypes, using a novel phenotyping system. These traits were specifically selected because they exist under modalities enabling the expression of both strategies. The genotypes were selected from locations spread across a large aridity gradient represented by temperature and precipitation data spanning 30 years. Here, we uncovered a substantial diversity in TR responses to VPD where slopes of the linear responses correlated negatively with local maximal temperatures, pointing to opposite drought tolerance strategies. Low canopy conductance (low slopes) was associated with higher aridity, likely to enable water‐saving, while higher conductance was associated with wetter areas, likely to enable a more aggressive water use to maximize physiological activity. TRN was highly diverse and represented up to 15% of maximal daytime TR, pointing to the possibility of increasing water‐saving by reducing TRN. Furthermore, we detected pre‐dawn variation in TRN that negatively correlated with local precipitation, indicating that a tighter circadian control is associated with adaptation to drought, consistently with a circadian resonance mechanism. These findings indicate that canopy conductance and TRN are potentially beneficial to design drought‐tolerant barley germplasm adapted to different drought regimes taking place in the Middle‐East. 相似文献
182.
Wilson Wagner Ribeiro Teixeira Rafael Battisti Paulo Cesar Sentelhas Milton Ferreira de Moraes Adilson de Oliveira Junior 《Journal of Agronomy and Crop Science》2019,205(5):533-544
Soya bean yield gap can be caused by different factors resulting in uncertainties when the objective is to use such information for farm decision‐making and reference yield determination. Thus, this study aimed to quantify the soya bean yield gap for four sites, located in Southern and Midwestern Brazil, as well as the uncertainties of that related to cultivars, sowing dates, soil types and reference yields. The crop simulation model DSSAT‐CSM‐CROPGRO‐Soybean was calibrated for cultivars with similar maturity groups, based on the data obtained from the best farmers at the county level. The yield gap by water deficit (YGWD) was obtained through the difference between potential and attainable yields, and that one caused by sub‐optimum crop management (YGCM) by subtracting actual yield of each county, obtained from official statistics between 1989/90 and 2014/15 growing seasons, from the estimated attainable yield. The yield was simulated using four sowing dates, three soil types and two soya bean maturity groups by county. The reference yield uncertainty was quantified using yield reference from crop model and regional winners of the soya bean yield context, conducted by CESB (Brazilian Soybean Strategic Committee), for the growing seasons from 2013/14 to 2015/16. The crop model showed a good agreement between measured and simulated crop development and growth using calibration by maturity group, with low root mean square error (347 kg/ha). Southern sites had a mean YGWD of 1,047 kg/ha, while in the Midwest, it was lower than 100 kg/ha. The YGCM was 1,067, 528, 984 and 848 kg/ha, respectively, for Castro, PR, Mamborê, PR, Montividiu, GO and Primavera do Leste, MT, representing the opportunity for yield gain when having the best farmers as reference. The maturity groups, sowing dates and soil types showed to be an important source of uncertainty for yield gap determination, being recommended to investigate the farms in detail for an appropriate quantification. The reference yield showed expressive uncertainties, with some farmers presenting conditions to increase their soya bean yields by more than 3,000 kg/ha, when considering as reference the yields obtained by the winners’ farmers. These results show that uncertainties must be reduced when assessing farm yield gaps, in order to ensure that expected rate of soya bean yield growth could be reached by adopting the same technologies from CESB winners and best farmers in the county as a reference. 相似文献
183.
Junfeng Wang Yujie Shi Yunna Ao Dafu Yu Jiao Wang Song Gao Johannes M. H. Knops Chunsheng Mu Zhijian Li 《Journal of Agronomy and Crop Science》2019,205(6):554-561
Extreme drought events can directly decrease productivity in perennial grasslands. However, for rhizomatous perennial grasses it remains unknown how drought events influence the belowground bud bank which determines future productivity. Ninety‐day‐long drought events imposed on Leymus chinensis, a rhizomatous perennial grass, caused a 41% decrease in the aboveground biomass and a 28% decrease in belowground biomass. Aboveground biomass decreased due to decrease in both the parent and the daughter shoot biomass. The decreases in daughter shoot biomass were due to reductions in both the shoot number and each individual shoot weight. Most importantly, drought decreased the bud bank density by 56%. In addition, drought induced a bud allocation change that decreased by 41% the proportion of buds that developed into shoots and a 41% increase in the buds that developed into rhizomes. Above results were supported by our field experiment with watering treatments. Thus, a 90‐day‐long summer drought event decreases not only current productivity but also future productivity, because the drought reduces the absolute bud number. However, plasticity in plant development does partly compensate for this reduction in bud number by increasing bud development into rhizomes, which increases the relative allocation of buds into future shoots, at the cost of a decrease in current shoots. 相似文献
184.
Rice reportedly possesses a very low capacity to accumulate glycinebetaine (Glybet), but may be accumulated by the exogenous application of Glybet or Choline (Cho) as an alternative way to improve its salt‐tolerant ability. The aim of this research was to determine whether Glybet accumulation could be induced in Thai jasmine rice by the exogenous application of Glybet and Cho, and to determine the effects of Glybet and Cho treatment on various growth parameters of seedlings cultured under salt‐stress conditions. Thai jasmine rice seeds were aseptically germinated in vitro on solidified Murashige–Skoog media, supplied with either Glybet or Cho in the culture media for 12 days and then treated with 342 mm NaCl (salt stress) for 4 days. GlyBet content, water relation, photosynthetic capabilities and growth characteristics of salt‐stressed seedlings were measured. The addition of Glybet or Cho to plant culture media containing 342 mm NaCl resulted in increased accumulation of Glybet in rice seedlings. Increased Glybet accumulation was strongly associated with a high efficiency of water usage (r = 0.96), which in turn correlated with increased maximum quantum yield of PSII (Fv/Fm) (r = 0.86). Moreover, the pigment concentrations of seedlings cultured under salt stress were maintained by a function of Glybet, led to high efficiency of photochemical and non‐photochemical quenching of PSII as well as to exhibit on net photosynthetic rate. Thus, our results suggest that the addition of either Glybet or Cho to the plant growth media can improve growth performance under salt stress conditions by increasing the salt tolerance of Thai jasmine rice. The exogenous application of Glybet and/or Cho to culture media may be an effective method of improving resistance to salt stress via the promotion of Glybet accumulation with in rice seedlings. 相似文献
185.
Relationship between Carbon Isotope Discrimination, Ash Content and Grain Yield in Wheat in the Peninsular Zone of India 总被引:3,自引:0,他引:3
S. C. Misra R. Randive V. S. Rao M. S. Sheshshayee R. Serraj P. Monneveux 《Journal of Agronomy and Crop Science》2006,192(5):352-362
Carbon isotope discrimination (Δ) and ash content (ma) have been proposed as indirect selection criteria for grain yield in wheat. The associations between Δ, ma and grain yield were found, however, to depend highly on the environmental conditions, the organ sampled and the time of sampling. In this study, carried out in the warm conditions of the Peninsular Zone of India, the relationship between Δ, ma and yield was studied in 30 bread and durum wheat cultivars under residual soil moisture stress (RSMS), post‐anthesis water stress (PAWS) and well‐watered (WW) conditions. Both Δ and ma were analysed in young seedlings (four‐leaf stage), leaves at anthesis and grain at maturity. Ash content was also evaluated in leaves at booting stage and maturity. Grain Δ was lower under PAWS and RSMS than under WW, while seedling and leaf Δ did not significantly differ among water regimes. Grain yield was positively correlated to grain Δ under PAWS and negatively correlated to grain ma under RSMS. A significant positive correlation was noted under RSMS and WW treatments between maLm and grain yield. Ash content in leaf at maturity consequently appears to be a useful indirect selection criterion in environments where Δ does not show any correlation with yield. The results highlight the potential of Δ and ma as indirect selection criteria for wheat yield in the conditions of the Peninsular Zone of India. 相似文献
186.
The improved Analytic Hierarchy Process is adopted for the optimal decision of waste water treatment process. The unified test of traditional method is avoided owing to using the three scale method and inducting the optimum transfer matrix and then converting into the unified judgement matrix. It is proven by example that it is feasible to use the improved Analytic Hierarchy Process in the optimal decision of the waste water treatment process. 相似文献
187.
A way to enhance coal bed methane desorption and seepage by sonic vibrating of cavitataion water jets is proposed because the gas coal seams have the intrinsic properties of micro-porosity, low permeability and high adsorption. The mechanisms of how the sonic vibrating effects promote methane desorption and seepage are analyzed, and the contrast experiments of methane desorption and seepage under sonic vibrating effects are also provided. The results show: when the cavitation number is 0.020 0, under sonic vibrating effects, the volume of coal bed methane desorption increases by 36.9%, and the time for coal bed methane desorption reduces by 19.6%. The speed of coal seams methane seepage is significantly increased by 35.3% and arrives at 0.383 3 ml/s. 相似文献
188.
QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population 总被引:7,自引:0,他引:7
The traits of elongation, volume expansion, and water absorption are very important in determining the quality of cooked rice grains. In this study, quantitative trait loci (QTL) analysis of these traits was performed using a recombinant inbred population derived from a cross between two indica cultivars, ‘Zhenshan 97’ and ‘Minghui 63 ,’ which are the parents of the most widely grown hybrid rice in China. Using a linkage map based on 221 molecular marker loci covering a total of 1796 cM, a total of 33 QTLs were identified for the nine traits tested. QTLs were detected on chromosomes 1– 3 , 5– 9 , and 11 , respectively. The QTLs identified included three for cooked rice grain length elongation (chromosomes 2 , 6 , and 11), six for width expansion (chromosomes 1‐ 3 , 6 , 9 , and 11) and two for water absorption (chromosomes 2 and 6). Interestingly, a single QTL located near the wx gene on chromosome 6 seemed to influence all the traits tested for the cooked rice quality. 相似文献
189.
C. Cocozza C. Pulvento A. Lavini M. Riccardi R. d'Andria R. Tognetti 《Journal of Agronomy and Crop Science》2013,199(4):229-240
Quinoa is a native Andean crop for domestic consumption and market sale, widely investigated due to its nutritional composition and gluten‐free seeds. Leaf water potential (Ψleaf) and its components and stomatal conductance (gs) of quinoa, cultivar Titicaca, were investigated in Southern Italy, in field trials (2009 and 2010). This alternative crop was subjected to irrigation treatments, with the restitution of 100 %, 50 % and 25 % of the water necessary to replenish field capacity, with well water (100 W, 50 W, 25 W) and saline water (100 WS, 50 WS, 25 WS) with an electrical conductivity (ECw) of 22 dS m?1. As water and salt stress developed and Ψleaf decreased, the leaf osmotic potential (Ψπ) declined (below ?2.05 MPa) to maintain turgor. Stomatal conductance decreased with the reduction in Ψleaf (with a steep drop at Ψleaf between ?0.8 and 1.2 MPa) and Ψπ (with a steep drop at Ψπ between ?1.2 and ?1.4 MPa). Salt and drought stress, in both years, did not affect markedly the relationship between water potential components, RWC and gs. Leaf water potentials and gs were inversely related to water limitation and soil salinity experimentally imposed, showing exponential (Ψleaf and turgor pressure, Ψp, vs. gs) or linear (Ψleaf and Ψp vs. SWC) functions. At the end of the experiment, salt‐irrigated plants showed a severe drop in Ψleaf (below ?2 MPa), resulting in stomatal closure through interactive effects of soil water availability and salt excess to control the loss of turgor in leaves. The effects of salinity and drought resulted in strict dependencies between RWC and water potential components, showing that regulating cellular water deficit and volume is a powerful mechanism for conserving cellular hydration under stress, resulting in osmotic adjustment at turgor loss. The extent of osmotic adjustment associated with drought was not reflected in Ψπ at full turgor. As soil was drying, the association between Ψleaf and SWC reflected the ability of quinoa to explore soil volume to continue extracting available water from the soil. However, leaf ABA content did not vary under concomitant salinity and drought stress conditions in 2009, while differing between 100 W and 100 WS in 2010. Quinoa showed good resistance to water and salt stress through stomatal responses and osmotic adjustments that played a role in the maintenance of a leaf turgor favourable to plant growth and preserved crop yield in cropping systems similar to those of Southern Italy. 相似文献
190.
Sorghum [(Sorghum bicolor L.) Moench] is a highly productive crop plant, which can be used for alternative energy resource, human food, livestock feed or industrial purposes. The biomass of sorghum can be utilized as solid fuel via thermochemical routes or as a carbohydrate substrate via fermentation processes. The plant has a great adaptation potential to drought, high salinity and high temperature, which are important characteristics of genotypes growing in extreme environments. However, the climate change in the 21st century may bring about new challenges in the cultivated areas. In this review, we summarize the most recent literature about the responses of sorghum to the most important abiotic stresses: nutrient deficiency, aluminium stress, drought, high salinity, waterlogging or temperature stress the plants have to cope with during cultivation. The advanced molecular and system biological tools provide new opportunities for breeders to select stress‐tolerant and high‐yielding cultivars. 相似文献